
Chapter 9

Rotation of Rigid Bodies

1 Angular Velocity and Acceleration

θ =
s

r
(angular displacement)

The natural units of θ is radians.

1 rad =
360o

2π
= 57.3o

Angular Velocity

Usually we pick the z-axis as the direction about which the rigid body rotates.

ω̄ =
∆θ

∆t
(average angular velocity)

ω = lim
∆t→0

∆θ

∆t
=

dθ

dt
(definition of angular velocity)

The angular velocity can also be written as a vector. Its magnitude is defined by
the above equation while its direction is defined by the right-hand rule.

Figure 1: Figure 5 from Chapter 9 from University Physics 12th edition.
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Angular Acceleration

The average angular acceleration is defined by:

ᾱ =
∆ω

∆t
(average angular acceleration)

α = lim
∆t→0

∆ω

∆t
=

dω

dt
(definition of angular acceleration)

ω =
dθ

dt
and α =

dω

dt
=

d

dt

dθ

dt
=

d2θ

dt2

Ex. 4 A fan blade rotates with angular velocity given by ωz(t) = γ − βt2,
where γ = 5.00 rad/s and β = 0.800 rad/s3. a) Calculate the angular
acceleration as a function of time. b) Calculate the instantaneous an-
gular acceleration αz at t = 3.00 s and the average angular acceleration
αav−z for the time interval t = 0 to t = 3.00 s. How do these two
quantities compare? If they are different, why are they different?

1.1 Angular Acceleration As a Vector

Figure 2: Figure 7 from Chapter 9 from University Physics 12th edition.
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2 Rotation with Constant Angular Acceleration

θ = angular displacement

ω = final angular velocity

ωo = initial angular velocity

α = constant angular acceleration

t = time

Here, we reintroduce the famous four equations for constant angular accelera-
tion:

ω = ωo + αt (1)

θ =
1

2
(ω + ωo) t = ω̄ t (2)

θ = ω0t+
1

2
αt2 (3)

ω2 = ω2
o + 2αθ (4)

Ex. 14 A circular saw blade 0.200 m in diameter starts from rest. In 6.00 s it
accelerates with constant angular acceleration to an angular velocity of
140 rad/s. Find the angular acceleration and the angle through which
the blade has turned.

3 Relating Linear and Angular Kinematics

In this section, we introduce the relationship between linear and angular kinemat-
ical variables (for rigid bodies). Once we do this, we can use these relationships
to determine the rotational dynamical quantities such as rotational kinetic energy
(Krot).

Starting with the relationship s = rθ, we can calculate the time rate of change of
both sides of this equation:
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∣∣∣∣dsdt
∣∣∣∣ = r

∣∣∣∣dθdt
∣∣∣∣

or
v = rω (relation between linear and angular speed)

Likewise, if we look at the time rate of change of both sides of this equation, we
find the following relation:

dv

dt
= r

dω

dt
or atan = r α

There is a second acceleration, which we’ve seen before, namely arad.

arad =
v2

r
= rω2

Ex. 25 An advertisement claims that a centrifuge takes up only 0.127 m
of bench space but can produce a radial acceleration of 3000g at
5000 rev/min. Calculate the required radius of the centrifuge. Is the
claim realistic?.

4 Energy in Rotational Motion

The kinetic energy of a point mass inside of a rigid body rotating about a fixed
axis with angular velocity ω is:

1

2
miv

2
i =

1

2
mir

2
iω

2

where vi is the tangential velocity of the point mass.

The total kinetic energy of a rigid body rotating about a fixed axis is:

K =
1

2
m1v

2
1 +

1

2
m2v

2
2 + · · · =

N∑
i=1

1

2
mir

2
iω

2 =
1

2
ω2

N∑
i=1

mir
2
i =

1

2
ω2 I

where we define the moment of inertia (I):
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I =
N∑
i=1

mi r
2
i (definition of the moment of inertia)

K =
1

2
I ω2 (rotational kinetic energy of a rigid body)

Let’s look at the moments of inertia for various objects (Tablel 9.2).

Ex. 28 Four small spheres, each of which you can regard as a point of mass
0.200 kg, are arranged in a square 0.400 m on a side and connected
by light rods (Fig. E9.28). Find the moment of inertia of the system
about an axis a) through the center of the square, perpendicular to its
plane (an axis through point O in the figure); b) bisecting two opposite
sides of the sqaure (an axis along the line AB in the figure); c) that
passes through the centers of the upper left and lower right spheres and
through point O.

Figure 3: Fig. E9.28 from our textbook shows 4 point-masses forming a rigid body held together
by 4 massless rods.
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Figure 4: Moments of Inertia of Various Bodies
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Ex. 43 A frictionless pulley has the shape of a uniform solid disk of mass 2.50 kg
and radius 20.0 cm. A 1.50-kg stone is attached to a very light wire
that is wrapped around the rim of the pulley (Fig.E9.43), and the
system is released from rest. (a) How far must the stone fall so that
the pulley has 4.50 J of kinetic energy? (b) What percent of the total
kinetic energy does the pulley have?

Figure 5: E9.43 from University Physics 14th edition.

4.1 Gravitational Potential Energy for an Extended Body

We can calculate the gravitational potential energy for an extended body by sum-
ming up the potential energies for all the masses (mi) inside the body.

Ugrav = m1gy1 + m2gy2 + m3gy3 · · · = g (m1y1 + m2y2 + m3y3 + · · · )

However, we know from our center-of-mass equations:

m1y1 + m2y2 + m3y3 + · · · = (m1 +m2 +m3 + · · · ) ycm = M ycm

Thus,
Ugrav = Mg ycm (potential energy for an extended body) (5)
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5 Parallel-Axis Theorem

If you know the moment of inertia of an object about an axis passing through its
center-of-mass (Icm), then it’s possible to easily calculate its new center-of-mass
about another axis (that is parallel to the original axis). If the axis is translated a
distance d, then the new moment of inertia can be written as:

Inew = Icm +M d2 (parallel-axis theorem) (6)

In many cases, calculating the moment of inertia requires doing an integral I =∫
r2 dm. Calculating the moment of inertia for an object rotating around a new

fixed axis (parallel to the original axis) would normally require doing another in-
tegral Inew =

∫
r2 dm. The parallel axis theorem states, that if you know the

moment of inertia about the center-of-mass (Icm), then the new moment of inertia
for an axis parallel to the original axis can be easily determined without doing any
integration.

Let’s look at an example using the Icm’s shown in Table 9.2.

Ex. 51 A thin, rectangular sheet of metal has mass M and sides of length a

and b. Use the parallel-axis theorem to calculate the moment of inertia
of the sheet for an axis that is perpendicular to the plane of the sheet
and that passes through one corner of the sheet.
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Prob. 75 The pulley in Fig. P9.75 has radius R and a moment of inertia I. The
rope does not slip over the pulley, and the pulley spins on a frictionless
axle. The coefficient of kinetic friction between block A and the table
top is µk. The system is released from rest, and blockB descends. Block
A has a mass mA and block B has mass mB. Use energy methods to
calculate the speed of block B as a function of the distance d that it
has descended.

Figure 6: P9.75 from University Physics 14th edition.
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Prob. 86 Neutron Stars and Supernova Remnants. The Crab Neb-
ula is a could of glowing gas about 10 light-years across, located
about 6500 light-years from the earth (Fig. P9.86). It is the
remnant of a star that underwent a supernova explosion, seen on
earth in 1054 A.D. Energy is release by the Crab Nebula at a
rate of about 5× 1031 W, about 105 times the rate at which the
sun radiates energy. The crab Nebula obtains its energy from
the rotational kinetic energy of a rapidly spinning neutron star
at its center. The object rotates once every 0.0331 s, and this
period is increasing by 4.22×10−13 s for each second of time that
elapses. (a) If the rate at which energy is lost by the neutron star
is equal to the rate at which energy is released by the nebula,
find the moment of inertia of the neutron star. (b) Theories of
supernovae predict that the neutron star in the Crab Nebula has
a mass about 1.4 times that of the sun. Modeling the neutron
star as a solid uniform sphere, calculate its radius in kilometers.
(c) What is the linear speed of a point on the equator of the neu-
tron star? Compare it to the speed of light. (d) Assume that
the neutron star is uniform and calculate its density. Compare it
to the density of ordinary rock (3000 kg/m3) and to the density
of an atomic nucleus (about 1017 kg/m3). Justify the statement
that a neutron star is essentially a large atomic nucleus.

Figure 7: P9.86 from University Physics 14th edition.
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