Chapter $5 \quad$ Problem 99

A curve with a $120-\mathrm{m}$ radius on a level road is banked at the correct angle for a speed of $20 \mathrm{~m} / \mathrm{s}$. If an automobile rounds this curve at $30 \mathrm{~m} / \mathrm{s}$, what is the minimum coefficient of static friction needed between tires and road to prevent skidding?

First of all, we can calculate the angle of the incline by solving $\sum F_{x}=m v^{2} / R$ and $\sum F_{y}=0$ and finding that $\tan \theta=v_{o}^{2} / R g$, where v_{o} is $20 \mathrm{~m} / \mathrm{s}$. Solving these equations simultaneously we find that $\theta=18.78^{\circ}$. In this part of the problem where no static friction is required, the normal force is just $n=m g / \cos \theta$.

For the second part of the problem where the speed increases from $20 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$, a static friction force ($\mu_{s} n$) parallel to the banked road is now required. Let's draw a free-body diagram with a coordinate system and components of forces along the x and y directions.

Notice that the direction of the x axis is in the direction of the acceleration to help simplify the equations, $\sum F_{x}=m v^{2} / R$ and $\sum F_{y}=0$.

$$
\begin{align*}
& \sum F_{x}=m \frac{v^{2}}{R} \quad \Rightarrow \quad f_{s} \cos \theta+n \sin \theta=m \frac{v^{2}}{R} \tag{1}\\
& \sum F_{y}=0 \quad \Rightarrow \quad-f_{s} \sin \theta+n \cos \theta-m g=0 \tag{2}
\end{align*}
$$

Making the substitution for the static friction, $f_{s}=\mu_{s} n$, we can re-write equations 1 and 2 and factor out the normal force n in both equations and find:

$$
\begin{align*}
& n=\frac{m v^{2}}{R\left(\mu_{s} \cos \theta+\sin \theta\right)} \tag{3}\\
& n=\frac{m g}{\left(-\mu_{s} \sin \theta+\cos \theta\right)} \tag{4}
\end{align*}
$$

Setting equations 3 and 4 equal to each other and defining $\beta=v^{2} / R g$, we can solve for the coefficient of static friction μ_{s} :

$$
\begin{equation*}
\mu_{s}=\frac{\beta-\tan \theta}{1+\beta \tan \theta} \tag{5}
\end{equation*}
$$

If we make the following substitutions, $\beta=v^{2} / R g$ and $\tan \theta=v_{o}^{2} / R g$, Eq. 5 can be rewritten as:

$$
\begin{equation*}
\mu_{s}=\frac{v^{2}-v_{o}^{2}}{R g+\frac{v^{2} v_{o}^{2}}{R g}}=\frac{30^{2}-20^{2}}{120(9.8)+\frac{\left(30^{2}\right)\left(20^{2}\right)}{120(9.8)}}=0.337 \tag{6}
\end{equation*}
$$

Notice that Eq. 6 gives us an equation for the minimum coefficient of static friction required to keep the car from slipping as a function of velocity v.

$$
\begin{equation*}
\mu_{s}=\frac{v^{2}-v_{o}^{2}}{R g+\frac{v^{2} v_{o}^{2}}{R g}} \quad \quad \text { (minimum } \mu_{s} \text { required) } \tag{7}
\end{equation*}
$$

Let's plot this equation for a range of velocities between 10 and $35 \mathrm{~m} / \mathrm{s}$.

Figure 1: This figure shows the coefficient of static friction required to keep a car from slipping when the ramp is designed for a car traveling at $20 \mathrm{~m} / \mathrm{s}\left(\mu_{s}=0\right)$. Equation 7 was plotted using Mathematica 5.1.

