
Chapter 20

The Second Law of Thermodynamics

When we previously studied the first law of thermodynamics, we observed how
conservation of energy provided us with a relationship between ∆U , Q, and W ,
namely ∆U = Q−W . However, it’s still possible to have “heat flow” from a cold
body to a warmer body and not violate the first law of thermodynamics. We need
another guiding principle that we can apply to thermodynamic systems that will
describe why heat should flow from “hot” objects to “cold” objects.

In this chapter we will discover a new state variable called entropy and learn how
changes in entropy will unambiguously determine the heat flow “in” or “out” of a
thermodynamic system.

1 Directions of Thermodynamic Processes

Thermodynamic processes that occur in nature are all irreversible processes.
These are processes that proceed spontaneously in one direction but not the other.
The flow of heat from a hot body to a cold body is irreversible.

However, we can think of a class of idealized processes that would be reversible.
An idealized reversible process is always very close to being in thermodynamic
equilibrium within itself and with its surroundings. For example, heat flow between
two bodies whose temperatures differ only infinitesimally can be reversed by making
only a very small change in one temperature or the other.
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While a reversible process is an idealization that can never be precisely attained
in the real world, making temperature gradients and the pressure differences in
the substance very small, we can keep the system very close to equilibrium states
and make the process nearly reversible. For this reason, reversible processes are
called equilibrium processes, with the system always in thermodynamic equilib-
rium.

2 Heat Engines

Any device that transforms heat partly into work or mechanical energy is called a
heat engine. The simplest kind of engine to analyze is one in which the working
substance undergoes a cyclic process. In summary, a heat engine absorbs thermal
energy from a high-temperature reservoir, performs some mechanical work, and
discards or rejects heat to a low-temperature reservoir. Applying the first law of
thermodynamics to a cyclic process, we see that Q = W .

A typical heat engine can be described by the following picture.

Figure 1: Schematic energy-flow diagram for a heat engine. Figure 20.3 from University Physics
15th edition.

The thermal efficiency of an engine, denoted by e, is the quotient:
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e =
W

QH
(1)

Ex. 1 A diesel engine performs 2200 J of mechanical work and discards
4300 J of heat each cycle. a) How much heat must be supplied to
the engine in each cycle? What is the thermal efficiency of the en-
gine?

Ex. 34 A heat engine takes 0.350 mol of a diatomic ideal gas around the cycle
shown in the pV -diagram of Fig. P20.34. Process 1→2 is at constant
volume, process 2→3 is adiabatic, and process 3→1 is at a constant
pressure of 1.00 atm. The value of γ for this gas is 1.40. a) Find the
pressure and volume at points 1, 2, and 3. b) Calculate Q, W , and
∆U for each of the three processes. c) Find the net work done by
the gas in the cycle. d) Find the net heat flow into the engine in one
cycle. e) What is the thermal efficiency of the engine? How does this
compare to the efficiency of a Carnot-cycle engine operating between
the same minimum and maximum temperatures T1 and T2? We’ll
come back and answer this last question later once we’ve investigated
the Carnot cycle.

Figure 2: Figure P20.34 from University Physics 15th edition.
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3 Internal-Combustion Engines

The gasoline engine is an example of a heat engine. In this section we determine the
thermal efficiency for two cyclic processes, the Otto cycle and the Diesel cycle.

3.1 The Otto Cycle

Figure 3: Cycle of a four-stroke internal-combustion engine. Figure 20.5 from University Physics
15th edition.

Using the definition of thermal efficiency (Eq. 1) we have:

e =
QH +QC

QH

Using the p-V diagram for the Otto cycle on the next page, we find the thermal
efficiency for the Otto cycle to be:

eff =
W

QH
=

QH +QC

QH
= 1 +

QC

QH
= 1 +

nCV (Ta − Td)
nCV (Tc − Tb)

= 1− (Td − Ta)
(Tc − Tb)

On the two adiabats, we have the following relations:

(c→ d) TcV
γ−1
c = (Td)(rVc)

γ−1 ⇒ Tc = Td(r)
γ−1 ⇒ Td =

1

rγ−1
Tc
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(a→ b) TbV
γ−1
b = Ta(rVb)

γ−1 ⇒ Tb = Ta(r)
γ−1 ⇒ Ta =

1

rγ−1
Tb

Substituting Td and Ta into the efficiency equation above, the thermal efficiency
becomes:

e = 1− 1

rγ−1
(thermal efficiency in the Otto cyle)

Typical r values for the Otto cycle are ∼8 while the theoretical efficiency is e =
0.56.

Ex. 8 Calculate the theoretical efficiency for an Otto-cycle engine with γ =
1.40 and r = 9.50. (b) If this engine takes in 10,000 J of heat from
burning its fuel, how much heat does it discard to the outside air?
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3.2 The Diesel Cycle

The Diesel engine is similar in operation to the gasoline engine, however, there is no
fuel in the cylinder at the beginning of the compression stroke. Typical r values in
a Diesel engine are 15-20 while theoretical efficiencies are about 0.65 to 0.70.

3.2.1 Efficiency for the Diesel cycle

eDiesel = 1 +
QC

QH
= 1 +

CV (Ta − Td)
CP (Tc − Tb)

= 1− 1

γ

(Td − Ta)
(Tc − Tb)

(2)

There are other ways to express the Diesel efficiency using volume ratios for the
power stroke and the compression stroke.
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4 Refrigerators

We can think of a refrigerator as a heat engine operating in reverse. It takes heat
from a cold place (inside the refrigerator) and ejects it to a warmer place (usually
the air in the room where the refrigerator is located).

The work required to extract the heat |QC | from the cold reservoir (the refrigerator)
can be found from conservation of energy:

W + |QC | = |QH |
or

W = |QH | − |QC |

The coefficient of performance (K) describes how much heat is extracted per
unit work:

K =
|QC |
W

=
|QC |

|QH | − |QC |
(coefficient of performance of a refrigerator)
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where K is a dimensionless number. The value K is also called the energy effi-
ciency rating The bigger the value, the more efficient the refrigerator.

Ex. 12 A refrigerator has a coefficient of performance of 2.10. In each cy-
cle it absorbs 3.10 × 104 J of heat from the cold reservoir. (a) How
much mechanical energy is required each cycle to operate the refrig-
erator? (b) During each cycle, how much heat is discarded to the
high-temperature reservoir?

5 The Second Law of Thermodynamics

There is experimental evidence that strongly suggests that it is impossible to build
a heat engine that converts heat completely into work–that is, an engine with 100%
thermal efficiency. This impossibility is stated in the 2nd law of thermodynamics.

2nd Law of Thermodynamics

“Engine statement: “It is impossible for any system to undergo a process in which it
absorbs heat from a reservoir at a single temperature and converts the heat completely
into mechanical work, with the system ending in the same state in which it began.

or

“Refrigerator statement: ”It is impossible for any process to have as its sole result
the transfer of heat from a cooler to a hotter body.
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6 The Carnot Cycle

Sadi Carnot (1796-1832) developed a hypothetical, idealized heat engine that has
the maximum possible efficiency consistent with the 2nd law of thermodynamics.
No heat engine can have 100% efficiency. The Carnot cycle determines the greatest
efficiency that an engine can have operating between two heat reservoirs at tem-
peratures TH and TC .

Postulates:

• To obtain the most efficient engine, the thermodynamic paths must be reversible.
Ideally, the whole thermodynamic cycle should be reversible.

• Heat exchange (Q) can only occur at constant temperatures (i.e., isotherms),
either at TC or TH . This is reversible.

• Temperature change (∆T ) can only occur with no heat exchange (i.e., adiabats)
where Q = 0. This is reversible.

The Carnot cycle consists of the following steps:

1. The gas expands isothermally at temperature TH , absorbing heat QH (a→b).

2. It expands adiabatically until its temperature drops to TC (b→c).

3. It is compressed isothermally at TC , rejecting heat |QC | (c→d).

4. It is compressed adiabatically back to its initial state at temperature TH
(d→a).

QH = Wab = nRTH `n

(
Vb
Va

)

QC = Wcd = nRTC `n

(
Vd
Vc

)
= −nRTC `n

(
Vc
Vd

)

eff =
W

QH
=

QH +QC

QH
= 1 +

QC

QH
= 1 −

TC `n
(
Vc
Vd

)
TH `n

(
Vb
Va

) (3)

However, we know that for an adiabatic process:
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PV γ = constant and TV γ−1 = constant′

Going back to our figure up above, the two adiabats give the following rela-
tions:

b→ c TCV
γ−1
c = THV

γ−1
b

d→ a TCV
γ−1
d = THV

γ−1
a

Taking the ratio of these two equations, we find that Vc/Vd = Vb/Va. Substituting
this result into Eq. 3, we find that:

eff = 1− TC
TH

(Carnot efficiency) (4)

Ex. 15 A Carnot engine whose high-temperature reservoir is at 620 K takes
in 550 J of heat at this temperature in each cycle and gives up 335 J to
the low-temperature reservoir. (1) How much mechanical work does
the engine perform during each cycle? What is (b) the temperature of
the low-temperature reservoir; (c) the thermal efficiency of the cycle?
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7 Entropy

The 2nd law of thermodynamics, as stated above, is in a different form compared to
other physical laws we have encountered. Instead of an equation, it is a statement
of impossibility. In order to put this law into the form of an equation, we need to
introduce a new state variable called the entropy, S.

For an Isothermal Process: If we increase the volume while keeping the temper-
ature (i.e., the internal energy) constant, we find that:

dQ = dW = p dV =
nRT

V
dV so nR

dV

V
=

dQ

T

The measure of randomness, which we will call entropy, is related to the number
of states accessible by the ensemble of molecules in a volume. If we “double” the
volume, we should some how “increase” the number of accessible states and, as a
result, increase the randomness or entropy. If we define entropy in the following
manner:

dS =
dQ

T
units of

[
J

K

]
(5)

we see that the entropy “increases” by a factor of `n(2) when the volume “doubles.”

What if the process is not isothermal?

We can still use Eq. 5 to define the infinitesimal change in entropy. However, when
the system acquires or loses energy on a thermodynamical path other than an
isothermal path, we need to integrate the infinitesimal changes to find the total
“change in entropy,” ∆S:

∆S =

∫ T2

T1

dQ

T
(for non-isothermal paths)

Ex. 23 A sophomore with nothing better to do adds heat to 0.350 kg of ice
at 0.0oC until it is all melted. a) What is the change in entropy of the
water? b) The source of heat is a very massive body at a temperature
of 25.0oC. What is the change in entropy of this body? c) What is the
total change in entropy of the water and the heat source?
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8 Microscopic Interpretation of Entropy

Imagine you have 10 coins and you want to calculate the “number of microscopic
states” for the given “macroscopic state” that all 10 coins will have their “heads
up.” Obviously, there is only one way (or one combination) by which this can be
done. Suppose you want to calculate the total number of “microscopic states” for
the “macroscopic state” where there is only 1 coin with its “head” facing up and
the other 9 coins having their “heads” facing down. Well, there are 10 “microscopic
states” (or combinations) that can give that result. And, so on. The number of
combination is giving by the binomial coefficients

(
n
m

)
. In other words, “If I had

n coins, how many ways could I rearrange them (i.e., how many microstates are
there) such that I would have m coins with heads up.”

This is a simple program to write using Mathematica. The results are as follows
for 4 coins, 10 coins, 100 coins, and 1,000 coins.
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Figure 4: These four figures show the number of combinations possible for m “heads up” for n =
4, 10, 100, and 1,000 coins. In statistical mechanics jargon, these four figures show the number of
microstates as a function of macrostate “m” for n coins. The macrostate “m”is the number along
the x axis. For example, for 100 coins the greatest number of microstates occurs at the macrostate of
m = 50. Notice that the widths of these distributions get smaller when the number of objects (i.e.,
coins) increases. The probability for the system to deviate from the average value gets increasingly
small as the number of objects increases.
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The fraction of coins with all “heads up“ are:

Table 1: A list of probabilities for “all heads up” for n number of coins

n fraction of combinations with all “heads up”

4 coins 0.0625
10 coins 0.00097656

100 coins 7.88861× 10−31

1,000 coins 9.33264× 10−302

As you can see, the possibility of having 1,000 coins with all their “heads up” is
astronomically small. This analysis can also be applied to the molecules in this
room. Suppose that there are only 1,000 molecules in this room, and you wait
for all 1,000 of them to be in the “left half” of the room. The probability of that
happening is 9.33×10−302. Now, imagine how astronomically small that probability
would be if we require many times Avogadro’s number of molecules to be in the
“left half” of the room. We would be waiting many times longer than the lifetime
of the universe.

The microscopic definition of entropy

If we let Ω represent the number of possible microscopic states for a given macro-
scopic state, then the entropy S of the macroscopic state is given by:

S = kB `n(Ω) (microscopic expression for entropy)

where kB is the Boltamann constant (1.38×10−23 J/K). Notice that the Boltzmann
constant has the same units as entropy. This is not a coincidence. The Boltzmann
constant is inextricably linked to the definition of entropy. Also note that our text-
book uses the symbol w to represent the # of microstates for a given macrostate.
W = Wahrscheinlichkeit = german for probability.

In practice, the system must be able to occupy at least one accessible state (i.e.,
microstate), in which case, the entropy of the system would be zero. The entropy
can never be negative. Using this definition of entropy, we can plot the entropy as
a function of the macrostates m, similar to what we did for the figures above. The
entropy as a function of the macrostates is shown in Fig. 5.
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Figure 5: The `n(Ω) as a function of the macrostate number m for n = 1,000 coins. The `n of the
number of microstates is directly proportional to the entropy.

Consider a system that undergoes a thermodynamic process that takes if from
a macroscopic state 1, for which there are Ω1 possible microscopic states, to a
macroscopic state 2, which has Ω2 microscopic states. The change in entropy in
this process is:

∆S = S2 − S1 = kB `n(Ω2) − kB `n(Ω1) = kB `n

(
Ω2

Ω1

)
For example, if we use Fig. 5, the differences in entropy can be read off the vertical
axis where Ω1 is the number of microstates in macrostate m1 = 500, and Ω2 is the
number of microstates in macrostate m2 = 600. In this case, the change in entropy
would be:

∆S = kB `n(Ω2)− kB `n(Ω1) = kB(669.352− 689.467) = − kB (20.1151)

where kB = 1.38× 10−23J/K, the Boltzmann constant.
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