
Chapter 18

Thermal Properties of Matter

In this section we define the thermodynamic state variables and their relationship
to each other, called the equation of state. The system of interest (most of the
time) is a “closed” container of gas. Once we define the properties of this closed
container of gas, we will explore its interaction with the surrounding “environment”
by developing the first law of thermodynamics (Ch. 19), and the second law of
thermodynamics (Ch. 20).

1 Equations of State

Let’s define the “state variables” of a thermodynamic system.

1. P the pressure [Pa]

2. V the volume [m3]

3. T the temperature [K]

4. n the no. of moles [mol ]
or N the no. of constituent particles [no.]

5. S the entropy [J/K]

Another useful quantity describing the gas is its mass which can be determined from
the number of moles (n), and the molecular weight (M), or the molar mass..

mass = nM

From experiment, we observe the following relationships between the pressure, the
volume, the number of moles, and the temperature.

P ∼ T P ∼ n and P ∼ 1

V
These can be combined into a single relationship as follows:

P ∼ nT

V
or PV = nRT (the ideal gas law)
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where R is the universal gas constant (8.31 J/(mol·K) ).

Ex. 3 A cylindrical tank has a tight-fitting piston that allows the volume of
the tank to be changed. The tank originally contains 0.110 m3 of air
at a pressure of 0.355 atm. The piston is slowly pulled out until the
volume of the gas is increased to 0.390 m3. If the temperature remains
constant, what is the final value of the pressure?

Ex. 9 A large cylindrical tank contains 0.750 m3 of nitrogen gas at 27oC and
7.50 × 103 Pa (absolute pressure). The tank has a tight-fitting piston
that allows the volume to be changed. What will be the pressure if
the volume is decreased to 0.410 m3 and the temperature is increased
to 157oC?
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1.1 The Van Der Waals Equation

(
p+

an2

V 2

)
(V − nb) = nRT

The constants a and b are empirical constants, and are different for different gases.
The constant b represents the volume of a mole of molecules while the constant a
depends on the attractive intermolecular forces, which reduce the pressure of the
gas for given values of n, V , and T by pulling the molecules together as they push
against the walls of the container. If n/V is small, you return to the ideal gas
law.

1.2 pV-Diagrams

We will be using the pV diagram on a regular basis throughout the next chapter
when we study heat engines and refrigerators.

If you know the pressure P , the volume V , and the number of moles of gas n in
the system, then there is a unique temperature for the system.

T =
PV

nR

By keeping the temperature constant, and varying the pressure and volume, we
can trace out a curved, hyperbolic line on the pV diagram called on isotherm.
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2 Molecular Properties of Matter

One mole contains Avogadro’s number of particles (e.g., atoms or molecules).

NA = 6.022× 1023 molecules/mol (Avogadro’s number)

The mass per molecule (or atom) m is:

m =
M

NA

where M is the molecular mass in kg/mol.
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Ex. 23 How Close Together Are Gas Molecules? Consider an ideal gas at
27oC and 1.00 atm. To get some idea how close these molecules are to
each other, on the average, imagine them to be uniformly spaced, with
each molecule at the center of a small cube. (a) What is the length of an
edge of each cube if adjacent cubes touch but do not overlap? (b) How
does this distance compare with the diameter of a typical molecule?
(c) How does their separation compare with the spacing of atoms in
solids, which typically are about 0.3 nm apart?

3 Kinetic-Molecular Model of an Ideal Gas

In this section we start our investigation of the macroscopic properties of a gas by
studying its microscopic interactions.

Properties of the Ideal Gas

1. The ideal gas consists of particles, which are in random motion and obey
Newton’s laws of motion.

2. The total number of molecules is “large.”

3. The volume occupied by the molecules is a negligibly small fraction of the
volume occupied by the gas.

4. No forces act on a molelcule except during a collision, either with the container
walls or with another molecule.

5. All collisions are (i) elastic and (ii) of negligible duration.

A Molecular View of Pressure

Consider a cubical box of edge L containing an ideal gas. The force of an individual
molecule of mass m with momentum px = mvx on a single wall can be written
as:

Fx =
∆px
∆t

=
2mvx
2L/vx

=
mv2x
L
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The pressure due to N molecules is defined to be F/A where F =
∑N

i=1 Fxi, so we
can write:

p =
F

A
=

1

L2

mv21x +mv22x + · · ·
L

=
m

L3

(
v21x + v22x + · · ·

)
Using the relationship Nm/L3 is the density ρ, we can write:

p = ρ

(
v21x + v22x + · · ·

N

)
= ρ

(
v2x
)
av

Figure 1: Figure 18.11 from University Physics 15th edition.

For any molecule, we can write the speed-squared as v2 = v2x + v2y + v2z , such that

v2x = v2y = v2z = 1
3v

2. Now we can write the above equation as:

p =
1

3
ρ(v2)av =

1

3
ρ(v2) (1)
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Figure 2: Figure 18.12 from University Physics 15th edition. For a molecule to strike the wall in
area A during a time interval dt, the molecule must be headed for the wall and be within the shaded
cylinder of length |vx| dt at the beginning of the interval.

We define a new velocity, the root-mean-square velocity vrms to be the average speed
of the molecules between collisions:

vrms =

√
3p

ρ
(2)

Notice that the pressure p of a gas varies proportional to the v2rms.

The average translational kinetic energy per molecules Ktrans

Ktot =
1

2
mv2rmsN (for N molecules)

v2rms = 3p

(
V

Nm

)
pV =

N

3
mv2rms pV =

2N

3

(
1

2
mv2rms

)

pV =
2

3
N (Ktrans)
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where Ktrans is the average kinetic energy for a single molecule (12mv
2
rms). Recall

that the ideal gas law states:

pV = nRT (the Ideal Gas Law)

Ktrans =
3

2

(pV )

N
=

3

2N
(nRT ) =

3

2
kT (for a single molecule) (3)

where k = 1.38× 10−23 J/K, the Boltzmann constant, and N/n = NA, and
R/NA = k.

The total energy of the gas is:

Ktot = N Ktrans =
3

2
NkT (for N molecules) (4)

or

Ktot =
3

2
nRT (for n moles)

Finally, we can relate the average speed between collisions (
√
v2rms) to the temper-

ature T and mass m using Eq. 3.

vrms =

√
3kT

m
=

√
3RT

M
(root-mean-square velocity of a gas molecule) (5)

Likewise, we have two forms for writing the equation of state:

pV = nRT and pV = NkT

(macroscopic) (microscopic)

Ex. 29 A deuteron, 2
1H, is the nucleus of a hydrogen isotope and consists

of one proton and one neutron. The plasma of deuterons in a
nuclear fusion reactor must be heated to about 300 million K.
What is the rms speed of the deuterons? Is this a significant
fraction of the speed of light (c = 3.0 × 108 m/s)? (b) What
would the temperature of the plasma be if the deuterons had an
rms speed equal to 0.10c?
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3.1 Collisions Between Molecules

Up until now, we’ve assumed that molecules are point-like objects. Let’s consider
a more realistic model in which the molecules are rigid spheres with radius r. Let’s
assume a system where we have N molecules in a fixed volume V . The mean-free-
path between collisions can be written as:

λ =
V

4π
√

2 r2N
(the mean free path of a gas molecule) (6)

Likewise, we can use the microscopic form of the ideal gas law (pV = NkT ) and
write Eq. 6 as:

λ =
kBT

4π
√

2 r2p
(7)

• Mean Free Path λ = kBT
4π
√
2r2p

= 102 nm

• Spacing Between Molecules = 3.44 nm (from Ex. 23)

• Size of molecule = 2× r = 0.30 nm

Conclusion: Gases in the atmosphere in this room have mean free paths λ > 20×
the size of a molecule, thus satisfying the “rule of thumb” for qualifying as an ideal
gas.

4 Heat Capacities

When we add heat to a system, we are increasing its molecular kinetic energy. If
we hold the volume V constant for a monatomic ideal gas, we can write that the
change in KE is equal the heat exchanged Q. Heat is energy in transit. We don’t
say that a system “contains so much heat.” Instead, Q is a measure of the thermal
energy flowing in or out of a system. This can be written as:

dK = dQ ⇒ 3

2
nRdT = nCV dT (8)
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where CV is the molar specific heat at constant volume. Comparing the two sides
of Eq. 8 we can find the value for CV for a monatomic gas.

CV =
3

2
R = 12.47 J/mol ·K (for a monatomic gas)

There’s a famous theorem in statistical physics that says the value of CV in-
creases by 1

2R for every degree of freedom. If we consider a gas consisting of
diatomic molecules at ordinary temperatures, it’s possible to induce rotational
motion around two of the three axes, thus adding one unit of R to the value of
CV.

CV =
5

2
R = 20.79 J/mol ·K (for a diatomic gas, including rotations)

Ex. 37 How much heat does it take to increase the temperature of
1.80 mol of an ideal gas by 50.0K near room temperature if the gas
is held at constant volume and is (a) diatomic; (b) monatomic?

dQ = nCV dT
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5 Molecular Speeds

If we have a system containing N molecules at a temperature T , then the number
of molecules dN with velocity in the range between v and v + dv is given by:

dN = Nf(v) dv

where f(v) is the probability per unit speed interval (v → v + dv).

5.1 The Maxwell-Boltzman velocity distribution

f(v) = 4π

(
m

2πkBT

)3/2

v2e−mv
2/2kBT (9)

f(ε) =

√
2

π

1

(kBT )3/2
ε1/2e−ε/kBT (10)

where ε = 1
2mv

2. This last equation f(ε) is incorrect in our textbook.
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5.1.1 The most probable velocity

∂f(v)

∂v
= 0 and solve for vmp

vmp =

√
2kT

m
(11)

5.1.2 The average velocity

vav =

∫ ∞
0

v f(v) dv

vav =

√
8kT

πm
(12)

5.1.3 The root-mean-square velocity

(
v2
)
av

=

∫ ∞
0

v2 f(v) dv

vrms =

√
3kT

m
(13)

This result agrees with the equipartition theorem and the results we derived earlier.

Here is a Mathematica program that investigates the properties of the Maxwellian
velocity distribution.

Ex. 41 For polyatomic carbon dioxide gas (CO2, molar mass 44.0 g/mol)
at T = 300 K calculate (a) the most probable speed vmp; (b) the
average speed vav; (c) the root-mean-square speed vrms.
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N.B.. You will need the following equation to work problem 56 in the MP home-
work. It describes the pressure as a function of altitude (h).

P (h) = Po e
−(mgh/kT ) = Po e

(−Mgh/RT )

This equation assumes constant temperature (T ) which is usually not the case.
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6 Phases of Matter

Figure 3: A typical p-T diagram depicting the phase transitions for most materials. Beyond the
“critical point” the substance is referred to as a supercritical fluid. There is no longer a phase
transition between vapor and liquid. This is where the liquid and gaseous phases of the substance
merge into a single phase, and where distinct liquid and gas phases do not exist. The supercritical
fluid can effuse through solids like a gas, and dissolve materials like a liquid.
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