
Chapter 12

Fluid Mechanics

A fluid is any substance that can flow, such as gases and liquids. In general, gases
are compressible, while liquids are difficult to compress. In the first part of this
chapter we will investigate fluid statics, and in the second half we will investigate
fluid dynamics–basically, the applications of Newton’s 1st law and Newton’s 2nd

law to fluids.

1 Density

While we’ve used the concept of density before this chapter, we will formally intro-
duce it here. When characterizing the density of a material occupying 3 dimensions,
we use the greek symbol “rho” (ρ) which is defined as:

ρ =
Mass

Volume
(definition of density)

The SI units of density are kg/m3. You will sometimes see two sets of units used
when expressing the density of a substance–either g/cm3, or kg/m3. See the table
in the book for typical densities of some common substances.

Sometimes, the density of material is compared to that of water at 4o C, and this
is called the specific gravity. This is really a measure of relative densities, and
as you can see from the definition of density, gravity has nothing to do with it.

Ex. 5 A uniform lead sphere and a uniform aluminum sphere have the same
mass. What is the ratio of the radius of the aluminum sphere to the
radius of the lead sphere?

2 Pressure in a Fluid

Another characteristic of a fluid is its pressure. The pressure is a scalar quantity
the measures the force/unit area.
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P =
dF⊥
dA

The SI units of pressure is the pascal, or Pa, and it’s equal to 1 N/m2. The
atmospheric pressure due to the weight of the atmosphere (measured at sea level),
is defined to be 1 atmosphere, or

1 atmosphere = 1.013× 105 Pa = 1.013 bar = 1013 millibar = 14.70 lb/in2

2.1 Pressure, Depth, and Pascal’s Law

We can derive a general relation between the pressure p at any point in a fluid at
rest and the elevation y of the point. We will assume that the density ρ and the
acceleration due to gravity g are the same throughout the fluid. If the fluid is at
rest, we can apply Newton’s 1st law to determine the pressure at the bottom and
top surfaces at their respective elevations y and y+dy. Let pA be the force pushing
down from the top.

∑
Fy = 0 pA− (p+ dp)A+ ρgAdy = 0

If we divide both side by the area A, as well as dy, we have
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dp

dy
− ρg = 0 or dp = ρg dy

Integrating both sides of this equation we find:

p2 − p1 = ρg (y2 − y1)

Sometimes it is convenient to express the pressure p as a function of depth h below
the surface. If we do this, we can rewrite the previous equation as

p− po = ρgh p = po + ρgh (1)

where h is the depth below the surface of the fluid, and po is the pressure at the
surface.

2.2 Pascal’s Law

Blaise Pascal (1623-1662), a French scientist, recognized that if the pressure at the
surface of the fluid increased, the pressure would also be added to all points in the
fluid underneath the surface.

Pascal’s Law: Pressure applied to an enclosed fluid is transmitted undiminished
to every portion of the fluid and the walls of the containing vessel.

This can be written in the form of an equation. The pressure (and over-pressure)
at the same elevations must be the same:

p =
F1

A1
=

F2

A2
and F2 = F1

A2

A1

The use of Eq. 1 is limited to regions (i.e., depths) where the density does not
change appreciably.

2.3 Absolute Pressure, Gauge Pressure, and Pressure Gauges

In most cases, when we use a pressure measuring device, it measures that gauge
pressure, that is, the pressure relative to the surrounding atmospheric pressure. In

3



4



other words, when you measure the gauge pressure, you’re measuring

p− po = ρgh (the gauge pressure)

On the other hand, a mercury barometer measures the absolute pressure, that is,
the total force/unit area the atmosphere is pushing on us locally.

Ex. 10 A barrel contains a 0.120-m layer of oil floating on water that is 0.250 m
deep. The density of the oil is 600 kg/m3. (a) What is the gauge pressure
at the oil-water interface? (b) What is the gauge pressure at the bottom
of the barrel?

3 Buoyancy

The buoyant force occurs whenever an object is is partially or completely sub-
merged in a fluid while in a gravitational field. The force was first stated by
Archimedes:

Archimedes principle: When a body is completely or partially immersed in
a fluid, the fluid exerts an upward force on the body
equal to the weight of the fluid displaced by the body.
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The buoyant force is another external force that can be used in Newton’s laws.
The magnitude of the force is

FB = ρ
fluid

gV
displ.

(the weight of the fluid displaced)

and the direction of the force is upward.

Ex. 17 An electrical short cuts off all power to a submersible diving vehicle when
it is 30 m below the surface of the ocean. The crew must push out a
hatch of area 0.75 m2 and weight 300 N on the bottom to escape. If the
pressure inside is 1.0 atm, what downward force must the crew exert on
the hatch to open it?

Ex. 29 An ore sample weighs 17.50 N in air. When the sample is suspended by
a light cord and totally immersed in water, the tension in the cords is
11.20 N. Find the total volume and the density of the sample.

4 Fluid Flow

Starting with this section, we begin to investigate the properties of fluid dynam-
ics.

General Concepts of Fluid Flow

Joseph Louis Lagrange (1736-1813) applied particle mechanics to the motion of
fluid particles to specify the history of each fluid particle.

Leonhard Euler (1707-1783) took a different approach. He specified the density
and the velocity of the fluid at each point in space at each instant of time.

ρ(x, y, z, t) and ~v(x, y, z, t)

We will focus our attention on what is happening at a particular point in space at
a particular time, rather than on what is happening to particular fluid particle.

What are some of the general characteristics of fluid flow?
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1. Fluid flow can be steady or nonsteady. Fluid flow is steady if the pressure,
density, and flow velocity are constant in time at every point of the fluid

2. Fluid flow can be compressible or incompressible. Fluid flow is incompressible
if the density ρ is a constant, independent of x, y, z, and t.

3. Fluid flow can be viscous or nonviscous. Viscosity in fluid motion is analo-
gous to the friction in the motion of solids–kinetic energy is transformed into
internal energy by viscous forces. The greater the viscosity, the greater the
external force or pressure must be applied to maintain the flow.

We will mostly consider the motion of ideal fluids which can be regarded as steady,
incompressible, and nonviscous.

Streamlines and the Equation of Continuity

In steady flow, the velocity ~v at a given point P is constant in time. Every particle
moving through P follows the same path, called a streamline.

Every fluid particle that passes through P subsequently passes through other points
Q and R. Likewise, every fluid particle that passes through R must have previously
passed through points Q and P . Connecting these points results in the formation
of a streamline.

The velocity vector ~v can change throughout the streamline, however, it is constant
and tangent at a particular point along the streamline.

Let’s consider the flow of a fluid through a tube of flow entering at area A1 and
exiting at a point area A2. The fluid particles enter A1 with a velocity v1 and exit
A2 with a velocity v2.

The amount of mass entering A1 in a time δt is:

δm1 = ρ1A1v1δt

We define the mass flux as the mass of fluid per unit time passing through any
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cross section:
δm

δt
= ρ1v1A1 (the mass flux at A1)

Likewise, this must also be the mass flux at A2 (i.e., conservation of mass):

δm

δt
= ρ2v2A2 (the mass flux at A2)

Thus we have:

ρ1v1A1 = ρ2v2A2 (Equation of continuity–compressible fluid)

where ρAv = constant.

We can take this one step further if we consider incompressible fluids where ρ1 =
ρ2. In this case, we have:

A1v1 = A2v2 (Equation of continuity–incompressible fluid)

where R = Av is devined as the volume flow rate.
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Ex. 41 Water is flowing in a pipe with a circular cross section but with varying
cross-sectional area, and at all points the water completely fills the pipe.
(a) At one point in the pipe the radius is 0.150 m. What is the speed of
the water at this point if water is flowing into this pipe at a steady rate of
1.20 m3/s? (b) At a second point in the pipe the water speed is 3.80 m/s.
What is the radius of the pipe at this point?

5 Bernoulli’s Equation

The flow of an ideal fluid through a pipe or a tube is influenced by the following
conditions:

1. the cross-sectional area of the pipe may change,
2. the inlet and outlet of the pipe may be at different elevations, and
3. the inlet and outlet pressures may be different.

The work-energy theorem is used to develop Bernoulli’s equation.

Wext = ∆K where Wext = W1 +W2 +Wgrav

W1 = p1A1 ds1
W2 = − p2A2 ds2
Wgrav = − ρ dV g(y2 − y1)

where A1 ds1 = A2 ds2 = dV = dm/ρ
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∆K =
1

2
dmv22 −

1

2
dmv21

Rewriting the work-energy equation, we have:

p1 +
1

2
ρv21 + ρgy1 = p2 +

1

2
ρv22 + ρgy2 (Bernoulli’s Equation)

1. Static pressure is a special case of fluid dynamics. Setting v1 = v2 = 0,
we have:

p2 − p1 = −ρg(y2 − y1)

2. Dynamic pressure for a fluid flowing horizontally (no change in poten-
tial energy)

10



p2 − p1 =
1

2
ρv21 −

1

2
ρv22

Bernoulli’s equation is basically an equation that describes the conservation of
energy density, namely:

p+ ρgy +
1

2
ρv2 = constant

Ex. 48 A small circular hole 6.00 mm in diameter is cut in the side of a large
water tank, 14.0 m below the water level in the tank. The top of the tank
is open to the air. Find a) the speed of efflux; b) the volume discharged
per unit time.

Ex. 60 Ballooning on Mars. It has been proposed that we could explore Mars
using inflated balloons to hover just above the surface. The buoyancy of
the atmosphere would keep the balloon aloft. The density of the Mar-
tian atmosphere is 0.0154 kg/m3 (although this varies with temperature).
Suppose we construct these balloons of a thin but tough plastic having
a density such that each square meter has a mass of 5.00 g. We inflate
them with a very light gas whose mass we can ignore. (a) What should
be the radius and mass of these balloons so they just hover above the
surface of Mars? (b) If we released one of the balloons from part (a) on
earth, where the atmospheric density is 1.20 kg/m2, what would be its
initial acceleration assuming it was the same size as on Mars? Would it
go up or down? (c) If on Mars these balloons have five times the radius
found in part (a), how heavy an instrument package could they carry?
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6 Viscosity and Turbulence

There are no equations in this section, but it’s worth reading–especially the part
describing the velocity profile for a fluid moving through a pipe.

Viscosity
The pressure difference required to sustain a given volume flow rate through a
cylindrical pipe of length L and radius R is proportional to L/R4. If the radius
R is decreased by 10%, this increases the required pressure difference by a factor
(1/0.90)4 = 1.52, or a 52% increase.

Superfluid
A superfluid is a fluid that displays zero viscosity. An example of this is superfluid
helium at temperatures below 2.17 K. If you stir superfluid helium and set it into
rotational motion, it will create a vortex whose kinetic energy does not dissipate.
In other words, it just keeps rotating.
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Prob. xx This is a Venturi meter (take a look at Example 12.9 for more details).
The horizontal pipe shown below has a cross-sectional area of 40.0 cm2 at
the wider portions and 10.0 cm2 at the constriction. Water is flowing in
the pipe, and the discharge from the pipe is 6.00× 10−3 m3/s (6.00 L/s).
Find (a) the flow speeds at the wide and narrow portions: (b) the pressure
difference between these portions; (c) the difference in height between the
mercury columns in the U-shaped tube.

Figure 1: Example of a Venturi meter

13


	Density
	Pressure in a Fluid
	Pressure, Depth, and Pascal's Law
	Pascal's Law
	Absolute Pressure, Gauge Pressure, and Pressure Gauges

	Buoyancy
	Fluid Flow
	Bernoulli's Equation
	Viscosity and Turbulence

