
Chapter 10

Dynamics of Rotational Motion

1 Torque

In this chapter we will investigate how the combination of force (F ) and the moment
arm (`) effect a change in rotational motion (i.e., rotational angular acceleration,
α).

τ = force×moment arm (definition of torque)

where the moment arm is the distance of closest approach to the line of action of
the force.

A positive torque is one that causes an object in the x-y plane to rotate in the
counter-clockwise direction, while negative torques are those the cause an object
to rotate in the clockwise direction.

clockwise torque (-θ) → negative torque

counter-clockwise torque (+θ) → positive torque

The magnitude of the torque can also be written as:

τ = F ` = rF sinφ
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The vector definition of the torque can be written as:

~τ = ~r × ~F (the torque vector)

How is the angle φ defined? It is the angle between ~r and ~F .

Recall how the vector cross-product is defined for ~r × ~F in chapter 1, equation
1.26.

Ex. 1 Calculate the torque (magnitude and direction) about point O due
to the force ~F in each of the situations sketched in Fig. E10.1. In
each case, the force ~F and the rod both lie in the plane of the page,
the rod has length 4.00 m, and the force has magnitude F = 10.0 N.

2 Torque and Angular Acceleration for a Rigid Body

How is the torque related to the angular acceleration of a rigid body? We will show
that the angular acceleration of a rotating rigid body is directly proportional to the
sum of the torque components along (i.e., tangential) to the axis of rotation.

F1,tan = m1 a1,tan → F1,tan = m1 a1,tan = m1 (r1 αz)
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τ1z = F1,tan r1 = m1 r
2
1 αz = I1 αz

τz = τ1z+τ2z+τ3z+· · · = m1r
2
1αz+m2r

2
2αz+m3r

2
3αz+· · · = I1αz+I2αz+I3αz+· · ·

τz =
∑

τiz =
(∑

mir
2
i

)
αz = I αz (Newton’s 2nd Law)

Ex. 11 A machine part has the shape of a solid uniform sphere of mass
225 g and diameter 3.00 cm. It is spinning about a frictionless axle
through its center, but at one point on its equator it is scraping
against metal, resulting in a friction force of 0.0200 N at that point.
(a) Find its angular acceleration. (b) How long will it take to decrease
its rotational speed by 22.5 rad/s?

3 Rigid-Body Rotation About a Moving Axis

3.1 Combined Translation and Rotation: Energy Relations

In this section we extend our definition of kinetic energy K to include both transla-
tional and rotational kinetic energy. The kinetic energy of a point mass mi is:

Ki =
1

2
miv

2
i =

1

2
mi~vi · ~vi =

1

2
mi (~vcm + ~vi

′) · (~vcm + ~vi
′)
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The kinetic energy of a sum of point masses comprising an extended object as
shown in the figure below can be written as:

K =
N∑
i=1

Ki =
∑(

1

2
miv

2
cm

)
+
∑

(mi~vcm · ~vi ′) +
∑(

1

2
miv

′2
i

)

K =
1

2

(∑
mi

)
v2cm + ~vcm ·

(∑
mi~vi

′
)

︸ ︷︷ ︸
= 0

+
∑(

1

2
miv

′2
i

)

K = Ktrans +Krot =
1

2
Mv2cm +

1

2
Icmω

2

Rolling without slipping:
In the case where we have rolling without slipping

vcm = Rω

acm = Rα
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3.2 Combined Translation and Rotation: Dynamics

Both forms of Newton’s 2nd law apply to objects executing both translational and
rotational motion.

∑
~Fext = m~a (1)∑
τz = Icm αz (2)

Equation 2 is valid even if the axis of rotation moves, provided the following two
conditions are met:

1. the axis through the center of mass must be an axis of symmetry,

2. the axis must not change direction.

Ex. 24 A hollow, spherical shell with mass 2.00 kg rolls without slipping
down a 38.0o slope. a) Find the acceleration, the friction force, and
the minimum coefficient of friction needed to prevent slipping. b) how
would your answers to part (a) change if the mass were doubled to
4.00 kg
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3.3 Instantaneous axis of rotation

We can save ourselves a little work if we modify item 1 above to include axes that
are parallel to the axis of symmetry. If we invoke the parallel axis theorem, we can
avoid solving two equations to find the acceleration acm. The acceleration of the
instantaneous axis of rotation is also the acceleration of the center-of-mass.

Ex. 30* A Ball rolling Uphill. A bowling ball rolls without slipping
up a ramp that slopes upward at an angle β to the horizontal (see
Example 10.7 in section 10.3). Treat the ball as a uniform, solid
sphere, ignoring the finger holes. a) Draw the free-body diagram
for the ball. Explain why the friction force must be directed uphill.
b) What is the acceleration of the center of mass of the ball? c) What
minimum coefficient of static friction is needed to prevent slipping.

4 Work and Power in Rotational Motion

The work performed on a rigid body is due to the force (torque) applied tangentially
and displacing it a distance ds.

dW = Ftan ds = FtanRdθ = τz dθ

6



The total work done by a torque τz during an angular displacement from θ1 → θ2
is:

W =

∫ θ2

θ1

τz dθ

The work done by a constant torque is:

W = τz ∆θ (work done by a constant torque)

The work-energy theorem states that the net work done on an object results in
a change in kinetic energy. For rotational motion we can write that the work done
by an external torque is:

Wrot = ∆K = Krot
f −Krot

i =
1

2
Iω2

f −
1

2
Iω2

i

Rotational Power

The average rotational power due to a constant torque τz is:

Power =
∆W

∆t
=

τz ∆θ

∆t
= τzω̄ (average rotational power)

while the instantaneous power due to a time-varying torque τz is:

Power =
dW

dt
=

τz dθ

dt
= τzω (instantaneous rotational power)

Ex. 32 An engine delivers 175 hp to the propeller at 2400 rev/min. a) How
much torque does the aircraft engine provide? b) How much work
does the engine do in one revolution of the propeller.

5 Angular Momentum

There is also a rotational analog to linear momentum; it’s called angular momen-
tum. The angular momentum of a mass or extended body depends on the choice
of origin O.
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~L = ~r× ~p = ~r×m~v

Notice the similarity between translational dynamics and rotational dynamics:

~τ = ~r× ~F
~L = ~r× ~p

Also notice that a particle moving in a straight line can also have angular
momentum whose scalar value is defined as:

L = mvr sinφ = mv`

where ` is the impact parameter, similar to the moment arm we discussed when
investigating the definition of torque.

We also have a rotational analog to Newton’s 2nd law in terms of the angular
momentum ~L:

~F =
d~p

dt
→ ~τ =

d~L

dt

The rate of change of angular momentum of a particle equals the torque
of the net force acting on it.
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L =
∑

Li =
∑

mi vi ri =
(∑

mi r
2
i

)
ω = I ω

where I is the moment of inertia about the z-axis. In vector form, we can write the
angular momentum for an extended rotating about around its symmetry axis:

~L = I ~ω

Ex. 38 A woman with mass 50 kg is standing on the rim of a large disk that
is rotating at 0.80 rev/s about an axis through its center. The disk
has mass 110 kg and a radius 4.0 m. Calculate the magnitude of the
total angular momentum of the woman-plus-disk system. (Assume
that you can treat the woman as a point.)

If multiple torques are applied to an extended body then it is proportional to the
time-rate-of-change of the angular momentum:

∑
~τ =

d~L

dt

6 Conservation of Angular Momentum

Similar to what we saw with Newton’s 3rd law for translational motion:

If
∑

~Fext = 0 then ~p = constant

we also find that for rotational motion:

If
∑

~τext = 0 then ~L = constant

Ex. 43 Under some circumstances, a star can collapse into an extremely
dense object made mostly of neutrons and called a neutron star.
The density of a neutron star is roughly 1014 times as great as that
of ordinary solid matter. Suppose we represent the star as a uniform,
solid, rigid sphere, both before and after the collapse. The star’s
initial radius was 7.0 × 105 km (comparable to our sun); its final
radius is 16 km. If the original star rotated once in 30 days, find the
angular speed of the neutron star.
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Ex. xx Sedna. In November 2003, the now-most-distant-known object in
the solar system was discovered by observation with a telescope on
Mt. Palomar. This object, know as Sedna, approximately 1700 km
in diameter, takes about 10,500 years to orbit our sun, and reaches a
maximum speed of 4.64 km/s. Calculations of its complete path, basd
on several measurements of its position, indicate that its orbit is highly
elliptical, varying from 76 AU to 942 AU in its distance from the sun,
where AU is the astronomical unit, which is the average distance of
the earth from the sun (1.50× 108 km). (a) What is Sedna’s minimum
speed? (b) At what points in its orbit do its maximum and minimum
speeds occur? (c) What is the ratio of Sedna’s maximum kinetic energy
to its minimum kinetic energy?

Pr. 63 Atwood’s Machine Figure P10.63 illustrates an Atwood’s ma-
chine. Find the linear accelerations of blocks A and B, the angular
acceleration of the wheel C, and the tension in each side of the cord
if there is no slipping between the cord and the surface of the wheel.
Let the masses of blocks A and B be 4.00 kg and 2.00 kg respectively,
the moment of inertia of the wheel about its axis be 0.300 kg·m2, and
the radius of the wheel be 0.120 m.

Figure 1: Figure P10.67 from University Physics 13th edition.
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7 Gyroscopes and Precession

In this section we observe a peculiar property of objects that are spinning, and
those that are not spinning while acted upon by some external force. Newton’s 2nd

law for rotational motional states:

∑
i

~τi =
d~L

dt

Another way of looking at Newton’s 2nd law is to write it in impulse form:

d~L = ~τ dt (Impulse form)

7.1 Gyroscope not spinning

Let’s imagine that we have a gyroscope and look at the case where the gyroscope
is not spinning.
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7.2 Gyroscope spinning

Let’s look at the case where the gyroscope is spinning.

In the case of the spinning gyroscope we observe the axis of the gyroscope (or the
angular momentum vector ~L) rotating about the pivot point. This peculiar motion
is called precession. The precession angular speed is denoted by the quantity
Ω:

Ω =
dφ

dt
=
|d~L|/|~L
dt

=
τz
Lz

=
wr

Iω

where w is the weight and r is the distance between the pivot and the gyroscope’s
center-of-mass when observed in the top view.
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Ex. yy The rotor (flywheel) of a toy gyroscope has mass 0.140 kg. The moment
of inertia about its axis is 1.20× 10−4 kg·m2. The mass of the frame is
0.0250 kg. The gyroscope is supported on a single pivot (Fig. E10.53)
with its center of mass a horizontal distance of 4.00 cm from the pivot.
The gyroscope is precessing in a horizontal plane at the rate of one
revolution in 2.20 s. (a) Find the upward force exerted by the pivot.
(b) Find the angular speed with which the rotor is spinning about its
axis, expressed in rev/min. (c) Copy the diagram and draw vectors to
show the angular momentum of the rotor and the torque acting on it.?

Figure 2: Figure E10.53 from University Physics 13th edition

The angular precession of the gyroscope about the pivot is:

Ω =
wr

Iω
(3)

where w = weight = mg, and
ω = the angular velocity of the gyroscope rotor.
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