Chapter 18
 Thermal Properties of Matter

In this section we define the thermodynamic state variables and their relationship to each other, called the equation of state. The system of interest (most of the time) is a "closed" container of gas. Once we define the properties of this closed container of gas, we will explore its interaction with the surrounding "environment" by developing the first law of thermodynamics (Ch. 19), and the second law of thermodynamics (Ch. 20).

1 Equations of State

Let's define the "state variables" of a thermodynamic system.

1. P the pressure [Pa]
2. V the volume $\left[m^{3}\right]$
3. T the temperature $[K]$
4. n the no. of moles [mol$]$
or N the no. of constituent particles [no.]
5. $\quad S$ the entropy $[J / K]$

Another useful quantity describing the gas is its mass which can be determined from the number of moles (n), and the molecular weight (M), or the molar mass..

$$
\operatorname{mass}=n M
$$

From experiment, we observe the following relationships between the pressure, the volume, the number of moles, and the temperature.

$$
P \sim T \quad P \sim n \quad \text { and } \quad P \sim \frac{1}{V}
$$

These can be combined into a single relationship as follows:

$$
P \sim \frac{n T}{V} \quad \text { or } \quad P V=n R T \quad \text { (the ideal gas law) }
$$

where R is the universal gas constant $(8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K}))$.

Ex. 3 A cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains $0.110 \mathrm{~m}^{3}$ of air at a pressure of 0.355 atm . The piston is slowly pulled out until the volume of the gas is increased to $0.390 \mathrm{~m}^{3}$. If the temperature remains constant, what is the final value of the pressure?

Ex. 9 A large cylindrical tank contains $0.750 \mathrm{~m}^{3}$ of nitrogen gas at $27^{\circ} \mathrm{C}$ and $7.50 \times 10^{3} \mathrm{~Pa}$ (absolute pressure). The tank has a tight-fitting piston that allows the volume to be changed. What will be the pressure if the volume is decreased to $0.410 \mathrm{~m}^{3}$ and the temperature is increased to $157^{\circ} \mathrm{C}$?

1.1 The Van Der Waals Equation

$$
\left(p+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

The constants a and b are empirical constants, and are different for different gases. The constant b represents the volume of a mole of molecules while the constant a depends on the attractive intermolecular forces, which reduce the pressure of the gas for given values of n, V, and T by pulling the molecules together as they push against the walls of the container. If n / V is small, you return to the ideal gas law.

1.2 pV -Diagrams

We will be using the $p V$ diagram on a regular basis throughout the next chapter when we study heat engines and refrigerators.
If you know the pressure P, the volume V, and the number of moles of gas n in the system, then there is a unique temperature for the system.

$$
T=\frac{P V}{n R}
$$

By keeping the temperature constant, and varying the pressure and volume, we can trace out a curved, hyperbolic line on the $p V$ diagram called on isotherm.

2 Molecular Properties of Matter

One mole contains Avogadro's number of particles (e.g., atoms or molecules).

$$
N_{A}=6.022 \times 10^{23} \text { molecules } / \mathrm{mol} \quad \text { (Avogadro's number) }
$$

The mass per molecule (or atom) m is:

$$
m=\frac{M}{N_{A}}
$$

where M is the molecular mass in $\mathrm{kg} / \mathrm{mol}$.

Ex. 23 How Close Together Are Gas Molecules? Consider an ideal gas at $27^{\circ} \mathrm{C}$ and 1.00 atm . To get some idea how close these molecules are to each other, on the average, imagine them to be uniformly spaced, with each molecule at the center of a small cube. (a) What is the length of an edge of each cube if adjacent cubes touch but do not overlap? (b) How does this distance compare with the diameter of a typical molecule? (c) How does their separation compare with the spacing of atoms in solids, which typically are about 0.3 nm apart?

3 Kinetic-Molecular Model of an Ideal Gas

In this section we start our investigation of the macroscopic properties of a gas by studying its microscopic interactions.

Properties of the Ideal Gas

1. The ideal gas consists of particles, which are in random motion and obey Newton's laws of motion.
2. The total number of molecules is "large."
3. The volume occupied by the molecules is a negligibly small fraction of the volume occupied by the gas.
4. No forces act on a molelcule except during a collision, either with the container walls or with another molecule.
5. All collisions are (i) elastic and (ii) of negligible duration.

A Molecular View of Pressure

Consider a cubical box of edge L containing an ideal gas. The force of an individual molecule of mass m with momentum $p_{x}=m v_{x}$ on a single wall can be written as:

$$
F_{x}=\frac{\Delta p_{x}}{\Delta t}=\frac{2 m v_{x}}{2 L / v_{x}}=\frac{m v_{x}^{2}}{L}
$$

The pressure due to N molecules is defined to be F / A where $F=\sum_{i=1}^{N} F_{x i}$, so we can write:

$$
p=\frac{F}{A}=\frac{1}{L^{2}} \frac{m v_{1 x}^{2}+m v_{2 x}^{2}+\cdots}{L}=\frac{m}{L^{3}}\left(v_{1 x}^{2}+v_{2 x}^{2}+\cdots\right)
$$

Using the relationship $N m / L^{3}$ is the density ρ, we can write:

$$
p=\rho\left(\frac{v_{1 x}^{2}+v_{2 x}^{2}+\cdots}{N}\right)=\rho\left(v_{x}^{2}\right)_{\mathrm{av}}
$$

Figure 1: Figure 18.11 from University Physics $15^{\text {th }}$ edition.
For any molecule, we can write the speed-squared as $v^{2}=v_{x}^{2}+v_{y}^{2}+v_{z}^{2}$, such that $\overline{v_{x}^{2}}=\overline{v_{y}^{2}}=\overline{v_{z}^{2}}=\frac{1}{3} \overline{v^{2}}$. Now we can write the above equation as:

$$
\begin{equation*}
p=\frac{1}{3} \rho\left(v^{2}\right)_{\mathrm{av}}=\frac{1}{3} \rho\left(\overline{v^{2}}\right) \tag{1}
\end{equation*}
$$

Figure 2: Figure 18.12 from University Physics $15^{\text {th }}$ edition. For a molecule to strike the wall in area A during a time interval $d t$, the molecule must be headed for the wall and be within the shaded cylinder of length $\left|v_{x}\right| d t$ at the beginning of the interval.

We define a new velocity, the root-mean-square velocity v_{rms} to be the average speed of the molecules between collisions:

$$
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 p}{\rho}} \tag{2}
\end{equation*}
$$

Notice that the pressure p of a gas varies proportional to the v_{rms}^{2}.

The average translational kinetic energy per molecules $K_{\text {trans }}$

$$
\begin{gathered}
K_{\mathrm{tot}}=\frac{1}{2} m v_{r m s}^{2} N \quad \text { (for } N \text { molecules) } \\
v_{\mathrm{rms}}^{2}=3 p\left(\frac{V}{N m}\right) \quad p V=\frac{2 N}{3}\left(\frac{1}{2} m v_{\mathrm{rms}}^{2}\right) \\
p V=\frac{N}{3} m v_{\mathrm{rms}}^{2} \quad p V=\frac{2}{3} N\left(K_{\text {trans }}\right)
\end{gathered}
$$

where $K_{\text {trans }}$ is the average kinetic energy for a single molecule ($\frac{1}{2} m v_{\mathrm{rms}}^{2}$). Recall that the ideal gas law states:

$$
\begin{gather*}
p V=n R T \quad \text { (the Ideal Gas Law) } \\
K_{\text {trans }}=\frac{3}{2} \frac{(p V)}{N}=\frac{3}{2 N}(n R T)=\frac{3}{2} k T \quad \text { (for a single molecule) } \tag{3}
\end{gather*}
$$

where $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$, the Boltzmann constant, and $N / n=N_{A}$, and $R / N_{A}=k$.
The total energy of the gas is:

$$
\begin{equation*}
K_{\mathrm{tot}}=N K_{\text {trans }}=\frac{3}{2} N k T \quad(\text { for } N \text { molecules }) \tag{4}
\end{equation*}
$$

or

$$
\left.K_{\mathrm{tot}}=\frac{3}{2} n R T \quad \text { (for } n \text { moles }\right)
$$

Finally, we can relate the average speed between collisions $\left(\sqrt{v_{\mathrm{rms}}^{2}}\right)$ to the temperature T and mass m using Eq. 3.

$$
\begin{equation*}
v_{\mathrm{rms}}=\sqrt{\frac{3 k T}{m}}=\sqrt{\frac{3 R T}{M}} \quad \text { (root-mean-square velocity of a gas molecule) } \tag{5}
\end{equation*}
$$

Likewise, we have two forms for writing the equation of state:

$$
\begin{array}{cll}
p V=n R T & \text { and } & p V=N k T \\
\text { (macroscopic) } & & \text { (microscopic) }
\end{array}
$$

Ex. 29 A deuteron, ${ }_{1}^{2} \mathrm{H}$, is the nucleus of a hydrogen isotope and consists of one proton and one neutron. The plasma of deuterons in a nuclear fusion reactor must be heated to about 300 million K. What is the rms speed of the deuterons? Is this a significant fraction of the speed of light $\left(c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$? (b) What would the temperature of the plasma be if the deuterons had an rms speed equal to 0.10 c ?

3.1 Collisions Between Molecules

Up until now, we've assumed that molecules are point-like objects. Let's consider a more realistic model in which the molecules are rigid spheres with radius r. Let's assume a system where we have N molecules in a fixed volume V. The mean-freepath between collisions can be written as:

$$
\begin{equation*}
\lambda=\frac{V}{4 \pi \sqrt{2} r^{2} N} \quad \text { (the mean free path of a gas molecule) } \tag{6}
\end{equation*}
$$

Likewise, we can use the microscopic form of the ideal gas law ($p V=N k T$) and write Eq. 6 as:

$$
\begin{equation*}
\lambda=\frac{k_{B} T}{4 \pi \sqrt{2} r^{2} p} \tag{7}
\end{equation*}
$$

- Mean Free Path $\quad \lambda=\frac{k_{B} T}{4 \pi \sqrt{2} r^{2} p}=102 \mathrm{~nm}$
- Spacing Between Molecules $=3.44 \mathrm{~nm}$
(from Ex. 23)
- Size of molecule $=2 \times r=0.30 \mathrm{~nm}$

Conclusion: Gases in the atmosphere in this room have mean free paths $\lambda>20 \times$ the size of a molecule, thus satisfying the "rule of thumb" for qualifying as an ideal gas.

4 Heat Capacities

When we add heat to a system, we are increasing its molecular kinetic energy. If we hold the volume V constant for a monatomic ideal gas, we can write that the change in KE is equal the heat exchanged Q. Heat is energy in transit. We don't say that a system "contains so much heat." Instead, Q is a measure of the thermal energy flowing in or out of a system. This can be written as:

$$
\begin{equation*}
d K=d Q \quad \Rightarrow \quad \frac{3}{2} n R d T=n C_{\mathrm{V}} d T \tag{8}
\end{equation*}
$$

where C_{V} is the molar specific heat at constant volume. Comparing the two sides of Eq. 8 we can find the value for C_{V} for a monatomic gas.

$$
C_{\mathrm{V}}=\frac{3}{2} R=12.47 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \quad \text { (for a monatomic gas) }
$$

There's a famous theorem in statistical physics that says the value of C_{V} increases by $\frac{1}{2} R$ for every degree of freedom. If we consider a gas consisting of diatomic molecules at ordinary temperatures, it's possible to induce rotational motion around two of the three axes, thus adding one unit of R to the value of C_{V}.

$$
C_{\mathrm{V}}=\frac{5}{2} R=20.79 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \quad \text { (for a diatomic gas, including rotations) }
$$

Ex. 37 How much heat does it take to increase the temperature of 1.80 mol of an ideal gas by 50.0 K near room temperature if the gas is held at constant volume and is (a) diatomic; (b) monatomic?

$$
d Q=n C_{V} d T
$$

TABLE 18.1 Molar Heat Capacities

 of Gases| Type of Gas | Gas | $\boldsymbol{C}_{\boldsymbol{V}}(\mathbf{J} / \mathbf{m o l} \cdot \mathbf{K})$ |
| :--- | :---: | :---: |
| Monatomic | He | 12.47 |
| | Ar | 12.47 |
| Diatomic | H_{2} | 20.42 |
| | $\mathrm{~N}_{2}$ | 20.76 |
| | O_{2} | 20.85 |
| | CO | 20.85 |
| Polyatomic | CO_{2} | 28.46 |
| | SO_{2} | 31.39 |
| | $\mathrm{H}_{2} \mathrm{~S}$ | 25.95 |

5 Molecular Speeds

If we have a system containing N molecules at a temperature T, then the number of molecules $d N$ with velocity in the range between v and $v+d v$ is given by:

$$
d N=N f(v) d v
$$

where $f(v)$ is the probability per unit speed interval $(v \rightarrow v+d v)$.

5.1 The Maxwell-Boltzman velocity distribution

$$
\begin{gather*}
f(v)=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-m v^{2} / 2 k_{B} T} \tag{9}\\
f(\epsilon)=\sqrt{\frac{2}{\pi}} \frac{1}{\left(k_{B} T\right)^{3 / 2}} \epsilon^{1 / 2} e^{-\epsilon / k_{B} T} \tag{10}
\end{gather*}
$$

where $\epsilon=\frac{1}{2} m v^{2}$. This last equation $f(\epsilon)$ is incorrect in our textbook.

Higher temperature:

- flatter curve
- maximum shifts to higher speeds
(a)

(b)

5.1.1 The most probable velocity

$$
\begin{gather*}
\frac{\partial f(v)}{\partial v}=0 \quad \text { and solve for } v_{\mathrm{mp}} \\
v_{m p}=\sqrt{\frac{2 k T}{m}} \tag{11}
\end{gather*}
$$

5.1.2 The average velocity

$$
\begin{gather*}
v_{\mathrm{av}}=\int_{0}^{\infty} v f(v) d v \\
v_{\mathrm{av}}=\sqrt{\frac{8 k T}{\pi m}} \tag{12}
\end{gather*}
$$

5.1.3 The root-mean-square velocity

$$
\begin{gather*}
\left(v^{2}\right)_{\mathrm{av}}=\int_{0}^{\infty} v^{2} f(v) d v \\
v_{\mathrm{rms}}=\sqrt{\frac{3 k T}{m}} \tag{13}
\end{gather*}
$$

This result agrees with the equipartition theorem and the results we derived earlier.

Here is a Mathematica program that investigates the properties of the Maxwellian velocity distribution.
Ex. 41 For polyatomic carbon dioxide gas $\left(\mathrm{CO}_{2}\right.$, molar mass $\left.44.0 \mathrm{~g} / \mathrm{mol}\right)$ at $T=300 \mathrm{~K}$ calculate (a) the most probable speed v_{mp}; (b) the average speed $v_{\text {av }}$; (c) the root-mean-square speed $v_{\text {rms }}$.
N.B.. You will need the following equation to work problem 56 in the MP homework. It describes the pressure as a function of altitude (h).

$$
P(h)=P_{o} e^{-(m g h / k T)}=P_{o} e^{(-M g h / R T)}
$$

This equation assumes constant temperature (T) which is usually not the case.

6 Phases of Matter

Figure 3: A typical $p-T$ diagram depicting the phase transitions for most materials. Beyond the "critical point" the substance is referred to as a supercritical fluid. There is no longer a phase transition between vapor and liquid. This is where the liquid and gaseous phases of the substance merge into a single phase, and where distinct liquid and gas phases do not exist. The supercritical fluid can effuse through solids like a gas, and dissolve materials like a liquid.

