
Chapter 15

Mechanical Waves

1 Types of Mechanical Waves

This chapter and the next are about mechanical waves–waves that travel within
some material called a medium. Waves play an important role in how we perceive
our physical world (e.g., sight and sound). Not all waves are mechanical, (e.g.,
electromagnetic waves); however, the terminology and concepts we introduce in
this chapter apply to all kinds of waves.

A mechanical wave is a disturbance that travels through some material or substance
called the medium for the wave. There are basically two kinds of waves–transverse
and longitudinal waves.

Waves propagate through the medium at a definite speed called the wave speed.
As the wave propagates through the medium, the particles sustaining the wave
motion move in simple harmonic motion about their equilibrium points. While
there is no net transport of matter during the propagation of a wave, there is
energy transport from one region to another.
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2 Periodic Waves

As the name implies, these waves occur with a certain repetition that can be de-
scribed characteristic properties.

A = the amplitude (mm, or m)
f = the frequency (Hz)
T = the period (s)
λ = the wavelength (mm, or m)

A special class of periodic waves are harmonic waves. These waves can be described
by sine and cosine functions, similar to what we did with simple harmonic motion.
For periodic waves, there is a relation between the wavelength and frequency:

v = fλ

where v is the speed of propagation.

2.1 Transverse Waves

Particles in the medium move in a direction perpendicular to the direction of prop-
agation. Waves generated by “shaking” a taut string “up and down” will generate
transverse waves. Interestingly, some transverse waves do not require a medium to
transport energy. As an example, electromagnetic waves can travel in a vacuum
and they also carry energy.

2.2 Longitudinal Waves

Particles in the medium move in a direction parallel and anti-parallel to the direc-
tion of propagation. Sound is an example of longitudinal waves.

Ex. 1 The speed of sound in air at 20oC is 344 m/s. (a) What is the wave-
length of a sound wave with a frequency of 784 Hz, corresponding to
the note G5 on a piano, and how many milliseconds does each vibration
take? (b) What is the wavelength of a sound wave one octave higher
than the note in part (a).
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3 Mathematical Description of a Wave

We introduce the concept of a wave function y = y(x, t) in order to quantify the
properties of wave motion. Once we know the wave function, we can calculate the
velocity, acceleration, and the amplitude of the wave at all times.

3.1 Wave Function for a Harmonic Wave

A sinusoidal wave is the simplest way to describe the motion of a string (or medium)
as it oscillates about its equilibrium position when a harmonic wave is being prop-
agated. Let’s write the wave function for a wave traveling from left-to-right and
see how it works:

y(x, t) = A cos 2πf
(x
v
− t
)

= A cos 2π

(
x

λ
− t

T

)
However, there is a more convenient form for writing a sinusoidal wave traveling
left-to-right :

y(x, t) = A cos (kx− ωt) (left-to-right)

where k = 2π/λ is called the wave number, and ω = 2πf is the angular fre-
quency.

To write a traveling wave that is moving in the opposite direction (right-to-left),
all we have to do is change the − sign into a + sign in the following way:

y(x, t) = A sin (kx+ ωt) (right-to-left)

Ex. 8 A certain transverse wave is described by

y(x, t) = (6.50 mm) cos 2π

(
x

28.0 cm
− t

0.0360 s

)
Determine the wave’s a) amplitude; b) wavelength; c) frequency;
d) speed of propagation; e) direction of propagation.

5



3.2 Particle Velocity and Acceleration in a Sinusoidal Wave

Again, once you know the wave function y(x, t), you can calculate the velocity and
acceleration of the particle. Let’s examine the transverse velocity and acceleration
of a traveling, harmonic wave moving from left-to-right:

y(x, t) = A cos(kx− ωt)

vy(x, t) =
∂y(x, t)

∂t
= ωA sin(kx− ωt)

ay(x, t) =
∂2y(x, t)

∂t2
= −ω2A cos(kx− ωt)

3.3 The Wave Equation

Calculating the second-order derivatives of the wave function y(x, t) and using the
relation v = ω/k, we find the following:

∂2y(x, t)

∂x2
= −k2 y(x, t) (1)

∂2y(x, t)

∂t2
= −ω2 y(x, t) (2)

Combining the above two equations, we find:

∂2y(x, t)

∂x2
=

1

v2

∂2y(x, t)

∂t2
(The Wave Equation) (3)

While this equation was derived using traveling, harmonic waves, it is true for other
waves as well. For example, see if the following wave function y(x, t) = A/(x− vt)2

satisfies the wave equation.
What about this wave function: y(x, t) = A/(x2 − v2t2) ?

4 Speed of a transverse Wave

We apply Newton’s second law,
∑ ~F = m~a, to a small segment of string whose

length in the equilibrium position is ∆x.
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F1y

F
= −

(
∂y

∂x

)
x

F2y

F
=

(
∂y

∂x

)
x+∆x

The net force in the y direction is:

Fy = F1y + F2y = F

[(
∂y

∂x

)
x+∆x

−
(
∂y

∂x

)
x

]
Let’s insert this equation into Newton’s second law,

∑
Fy = may:

F

[(
∂y

∂x

)
x+∆x

−
(
∂y

∂x

)
x

]
= (µ∆x)

∂2y

∂t2
(4)

The left-hand side of this equation looks very similar to the definition for the
second-order derivative, ∂2y/∂x2. In fact, using the fundamental definition of a
derivative, we can write:

∂2y

∂x2
≡ lim

∆x→0

[(
∂y
∂x

)
x+∆x

−
(

∂y
∂x

)
x

]
∆x

(5)
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Now, we can rewrite Eq. 4 using the definition from Eq. 5:

∂2y

∂x2
=

µ

F

∂2y

∂t2

Using the wave equation (Eq. 3), we can find the propagation velocity v:

v =

√
F

µ
(velocity of propagation)

Ex. 15 One end of a horizontal rope is attached to a prong of an electrically
driven tuning fork that vibrates at 120 Hz. The other end passes over
a pulley and supports a 1.50-kg mass. The linear mass density of the
rope is 0.0480 kg/m. a) What is the speed of a transverse wave on the
rope? b) What is the wavelength? c) How would your answers to parts
(a) and (b) change if the mass were increase to 3.00 kg?

5 Energy in Wave Motion

Every wave motion has energy associated with it. Let’s look at a transverse string
and investigate how the energy is transferred from one portion of a string to another.
Let’s assume we have a sinusoidal wave traveling from left-to-right.

The y-component of force is proportional to the negative of the slope of the wave
function. Draw a picture of this to convince yourself it’s true.

Fy(x, t) = −F ∂y(x, t)

∂x

As we’ve seen in a previous chapter, the power is the rate at which work is done,
or power = P = F ∆s/∆t.

Pinst =
dW

dt
= Fy(x, t) vy(x, t) = −F ∂y(x, t)

∂x

∂y(x, t)

∂t

P (x, t) = FkωA2 sin2(kx− ωt) P (x, t) =
√
µF ω2A2 sin2(kx− ωt)
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Pmax =
√
µF ω2A2 Pav =

1

2

√
µFω2A2

Ex. 22 A piano wire with mass 3.00 g and length 80.0 cm is stretched with
a tension of 25.0 N. A wave with frequency 120.0 Hz and amplitude
1.6 mm travels along the wire. a) Calculate the average power car-
ried by the wave. b) What happens to the average power if the wave
amplitude is halved?

5.1 Wave intensity

If the energy is propagated from the source in three dimensions, then the intensity
becomes the quantity of interest. The intensity is defined to be the Power/Area

I =
Power

Area
=

P

4πR2
(the intensity)

and has units of watts/m2.

9



6 Wave Interference, Boundary Conditions, and Superpo-

sition

What happens when a wave meets a boundary? When a wave meets a boundary
there are two extreme cases to consider. The first is the fixed end boundary where
the wave is reflected as in inverted wave. On the other hand, if the wave encounters
a free end boundary, the wave is reflected and not inverted.

6.1 The Principle of Superposition

The principle of superposition states that we can combine the displacements of
separate pulses (i.e., waves) at each point to obtain the actual displacement.
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“When two waves overlap, the actual displacement of any point on the
string at any time is obtained by adding the displacement the point
would have if only the first wave were present and the displacement it
would have if only the second wave were present.”

y(x, t) = y1(x, t) + y2(x, t) (The Principle of Superposition)

Ex. 30 Interference of Triangular Pulses. Two triangular wave pulses
are traveling toward each other on a stretched string as shown in
Fig. E15.32. Each pulse is identical to the other and travels at
2.00 cm/s. The leading edges of the pulses are 1.00 cm apart at t = 0.
Sketch the shape of the string at t = 0.250 s, t = 0.500 s, t = 0.750 s,
t = 1.000 s, and t = 1.250 s.

7 Standing Waves on a String

As an example of superposition, let’s look at standing waves on a string. This can
be viewed as the superposition of two traveling waves with the same amplitude,
frequency, and wavelength–one wave traveling left → right, and the second wave
traveling right → left.

y1 = A cos(kx− ωt) (L → R)

y2 = −A cos(kx+ ωt) (R → L)

The combined wave functions, using the principle of superposition, is:

y(x, t) = y1(x, t) + y2(x, t) = (2A sin kx) sinωt
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If we define the amplitude of the standing wave ASW = 2A, we can rewrite the
above equation as:

y(x, t) = (ASW sin kx) sinωt (Equation for a Standing Wave)

Notice that at t = 0, we have complete cancellation of the combined wave func-
tions.

Where do the nodes of the standing wave occur? They occur where sin kx = 0.

x = 0,
λ

2
,

2λ

2
,

3λ

2
, · · ·

Ex. 35 Standing waves on a wire are described by Eq. (15.28), with
ASW=2.50 mm, ω = 942 rad/s, and k = 0.750π rad/m. The left end
of the wire is at x = 0. At what distances from the left end are (a) the
nodes of the standing wave and (b) the antinodes of the standing wave?

8 Normal Modes of a String

In the previous section, we investigated the standing waves on an arbitrarily long
string. Because the string could be any length, we could generate identical opposing
traveling waves of any desirable wavelength, thus producing standing waves of any
wavelength.

In this section, we will investigate the standing waves produced on a fixed length
string, let’s say length = L. As we will see, this will result in wavelengths of
particular lengths labeled by an index n.

Let’s calculate the wavelengths of standing waves that can be supported on a string
of length L when both ends are fixed.

L = n
λ

2
(n = 1, 2, 3, . . . . )

λn =
2L

n
(n = 1, 2, 3, . . . . )
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n = 1 fundamental 1st harmonic
n = 2 1st overtone 2nd harmonic
n = 3 2nd overtone 3rd harmonic
n = 4 3rd overtone 4th harmonic

Using the relationship v = fnλn, we can write the frequency of the nth wavelength
as:

fn =
nv

2L
= nf1 (n = 1, 2, 3, . . . ) (6)

where:

For a string of length L, we have the following wave function describing the possible
standing waves:

yn(x, t) = ASW sin knx sinωnt

where kn = 2π/λn, and ωn = 2πfn.

If the tension F and mass density µ is known, then Eq. 6 can be rewritten as:

fn =
n

2L

√
F

µ
(standing waves on a fixed length string)

Ex. 38 A piano tuner stretches a steel piano wire with a tension of 800 N.
The steel wire is 0.400 m long and has a mass of 3.00 g. a) What is
the frequency of its fundamental mode of vibration? b) What is the
number of the highest harmonic that could be heard by a person who
is capable of hearing frequencies up to 10,000 Hz.

Ex. 47 Guitar String–no longer in the book. One of the 63.5 cm-long
strings of an ordinary guitar is tuned to produce the note B3 (frequency
245 Hz) when vibrating in its fundamental mode. a) Find the speed
of transverse waves on this string. b) If the tension in this string is
increased by 1.0%, what will be the new fundamental frequency of the
string? c) If the speed of sound in the surrounding air is 344 m/s,
find the frequency and wavelength of the sound wave produced in the
air by the vibration of the B3 string. How do these compare to the
frequency and wavelength of the standing wave on the string?
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Prob. 46 “Not part of the homework.” A transverse wave on a rope is given by

y(x, t) = (0.75 cm) cosπ
[(

0.400 cm−1
)
x+

(
250 s−1

)
t
]

a) Find the amplitude, period, frequency, wavelength, and speed of
propagation. b) Sketch the shape of the rope at these values of t: 0,
0.0005 s, 0.0010 s. c) Is the wave traveling in the +x- or −x-direction?
d) The mass per unit length of the rope is 0.0500 kg/m. Find the
tension. e) Find the average power of this wave.

Prob. 69 A large rock that weighs 164.0 N is suspended from the lower end of a
thin wire that is 3.00 m long. The density of the rock is 3200 kg/m3.
The mass of the wire is small enough that its effect on the tension in
the wire can be ignored. The upper end of the wire is held fixed. When
the rock is in air, the fundamental frequency for transverse standing
waves on the wire is 42.0 Hz. When the rock is totally submerged in a
liquid, with the top of the rock just below the surface, the fundamental
frequency for the wire is 28.0 Hz. What is the density of the liquid?
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