
The Zeeman Effect 
 

Many elements of this lab are taken from “Experiments in Modern Physics” by  A. 
Melissinos. 

 
Intro 

! The mercury lamp may emit ultraviolet radiation that is 
damaging to the cornea:  Do NOT look directly at the lamp while 
it is lit.  Always view the lamp through a piece of ordinary glass or 
through the optics chain of the experiment.   Ordinary glass 
absorbs ultraviolet radiation.  The mercury lamp’s housing 
however may be quartz glass which doesn’t absorb the ultraviolet.  

! Don’t force anything. 
! If you are unsure, ask first. 

 
In this lab, you will measure the Bohr Magneton by observing the Zeeman splitting of the 
mercury emission line at 546.1 nm.  To observe this tiny effect, you will apply a high-resolution 
spectroscopy technique utilizing a Fabri-Perot cavity as the dispersive element.  The most 
difficult aspect of this experiment is the interpretation of the Fabri-Perot cavity output and 
understanding the underlying theory. 
 
It’s easy to confuse the many different  “effects” modifying the energy of electrons orbiting the 
nucleous (and therefore affecting atomic spectra) so here is a short guide to the various types: 1 
 

o Basic level structure – This is the familiar structure most of us learn first in chemistry 
class whereby electrons arrange themselves in orbital “shells” around the nucleus.  
The orbitals have a number assigned to them, corresponding very roughly to their 
distance from the nucleus: 1, 2, 3 etc.  They also have a letter assigned to them 
corresponding to the shape of the orbital: S, P, D, .. etc  (S shells are spherical, P 
shells look like two teardrops with the pointy ends touching, etc.)  Each S shell can 
hold 2 electrons, each P shell can hold 6, each D shell 10 and so on.   The energy of 
each level depends on whether or not all lower levels are filled and/or on how many 
electrons are present in each level.  When all lower levels are occupied, the order of 
the levels in terms of energy is:  1S, 2S, 2P, 3S, 3P, 4S, 3D, 4P, etc.  The basic 
structure we see in spectroscopy is due to transitions of the outermost electrons to, 
from, or between higher unoccupied shells of the atom.  The number of the shell is 
known as the principle quantum number n=1,2,3,...  The letters S,P,D,... on the other 
hand correpsond to different (and quantized) orbital angular momenta labelled by the 
quantum number l=1,2,3,... respectively.  Usually, exposure to these quantum 
numbers first occurs when studying the Hydrogen atom in a Quantum Mechanics 
course. 
 

o Fine Structure – Since the electrons travel quite fast while “orbiting” the nuclei, 
relativistic effects can be important.  Relativistic effects cause small shifts in the 
energy levels (relativistic corrections to the kinetic and potential energies) and also 
lead to splitting of levels due to a relativistic interaction between the orbital angular 
momentum of the electron and its intrinsic angular momentum (or spin).  Electrons in 
the same orbital but in opposite spin states will have slightly different energy levels. 

                                                 
1 Extracted from “Physics of Atoms and Molecules” by B.H. Bransden and C.J. Joachain. 



This last effect is known as spin-orbit coupling. 
 

o Lamb shift – Slight shifts in the energy levels due to vacuum fluctuations that “smear 
out” the electron, making it sensitive to the non-uniformity of the fields surrounding 
he nucleous. 
 

o Hyperfine structure – This is due to coupling of the electron energy levels with the 
intrinsic angular momentum (spin) of the nucleous.  States of the electron with 
differing angular momenta will be further split by different levels of coupling with 
the nuclear spin. 
 

o Volume effect – Slight shifts in the expected energy levels due to the fact that the 
nucleous has finite size. 
 

o Zeemann effect – The splitting of energy levels with different angular momenta when 
an external magnetic field is applied.  Since an electron with non-zero angular 
momentum must have a non-zero magnetic dipole moment, this dipole moment will 
interact with any environmental magnetic dipole field, thus changing the energy of 
the electron by an amount that depends on its angular momentum. 
 

o Stark Effect – The splitting of energy levels due to the application of an external 
electric field. 

 
The Mercury atom, Hg, has 80 electrons.  The first four (n=1,2,3,4)  levels are full holding at total 
of 60 electrons, the n=5 level has the S,P and D, shells occupied (l=0,1,2) holding another 18 
electrons.  The two final electrons occupy the  6S shell (n=6, l=0).   We can think of the 58 inner 
electrons as being “inert” in that they act as a closed system that doesn’t interact with the 
outermost 2 electrons (except to passively sheild the nucleus, modifying the nuclear potential 
slightly so that the outermost electrons don’t quite see a 1/r potential).  When Hg198 gas is excited 
to discharge by an RF field as in our experiment, numerous transitions of the outer two electrons 
are observed.  We will use a  narrow pass-band filter known as an interference filter to isolate the 
green line at 546.07 nm.  This spectral line corresponds to a transition of one of the electrons 
between the 7S shell and the 6P shell, while the other electron remains in the 6S shell.  What we 
will see is that in the presence of a magnetic field, the line due to this transition will split into 
several different lines.   This is an example of the Zeeman effect.  We now consider the slitting of 
this transition in a quantitative way. 
 
Because of the closed nature of the inner shells, Mercury is a fairly simple multi-electron atom 
behaving, from a spectroscopic standpoint, rather like Helium.   The two electrons in the 
outermost shell don’t act independently but are coupled (according to the so-called Russell-
Saunders coupling scheme) so that the combined orbital angular momentum L of the electrons 
has a well defined value, as does the combined spin S.  This is a consequence of the fact that L 
and S for the coupled electron pair both commute with the Hamiltonian H even though the 
angular momenta for the individual electrons does not. Therefore whenever the coupled electron 
system has a well defined energy, the coupled system will also have a well defined total orbital 
angular momentum and a well defined total spin even though we can’t know the orbital angular 
momenta or spins of the electrons individually.  The eigenstates of L and S are labelled by the 
quantum numbers l and s respectively.   
 
You may be wondering whether the orbital angular momenta and the intrinsic angular momenta 
of the coupled electron state don’t just add up to one overall total angular momentum.  Indeed 
they do. The total angular momentum of the coupled electrons is J = L + S which commutes with 
the Hamiltonian just like L and S.  So, since the combined electron system has well defined 



values of orbital and intrinsic angular momentum in each of the two states involved in the 
transition, the value of the total angular momentum J, is also well defined in each state.  The 
eigenstates of J (which are also eigenstates of L and S) are labelled by the quantum number j, 
which can take on different values depending on whether the total spin of the two coupled 
electrons is aligned or anti-aligned with the orbital angular momentum: slj "# . Note that l 
and s correspond to the magnitude of the orbital momentum and spin and are themselves 
therefore always positive.  
 
The upshot of this whole discussion is that each state of the coupled system consisting of the two 
outermost electrons of mercury corresponds to a unique combination of the quantum numbers l, s 
and j for the coupled system. Therefore, transitions leading to spectral lines can be identified as 
being transitions between the states of particular combinations of the quantum numbers l, s and j.  
The transitions giving some of the strongest spectral lines in mercury are shown on the level 
diagram below (from Melissinos, 1st ed).  The various states are indicated by short horizontal 
lines whos position on the y-axis indicates the energy of the state.  The states are arranged in 
columns according to their quantum numbers, l, s  and j where  l, s and j are indicated using the 
traditional spectroscopic notation.  The superscript on the left of the captial letter is 2s+1.  The 
capital letter indicates the value of l:  The letter S corresponds to l=0, P corresponds to l=1, D to 
l=2, F to l=4, etc.  The subscript is the quantum number j.  [In the diagram below, the lines 
themselves are also marked by the shells occupied by the electrons.  Although this information is 
strictly speaking superfluous it helps to identify what is going on.]  The diagonal lines between 
the states indicate allowed transitions and numbers indicate the wavelength of the transition in 
Angstroms. 

 

 
 
 
 
The 546.07 nm transition we are investigating is between the states 3S1 and  3P2. Therefore, 
(translating the spectroscopic notation) the initial combined l for the two coupled outer electrons 
is 0 while the initial combined spin s is 1 (+1/2 from each electron).   The final l (after one 



electron has jumped from the 7S to the 6P shell) is 1 while the combined spin is still 1 where the 
combined spin points in the same direction as the orbital angular momentum.2 
  
It is an interesting feature of quantum mechanics that an eigenstate of the total angular 
momentum J is not simultaneously an eigenstate of all the vector components of the angular 
momentum.  In other words, we can know the length of the angular momentum vector but not its 
direction.  In transition being discussed here, for example, there are several possible values of the 
z-component of angular momentum Jz for the both the initial state and final states.  The 
eigenstates of Jz are labelled by the quantum number mj, which can take values mj =-j,-j+1,..j-1,j. 
So, for the initial state in our transition (6S,7S:  l=0, s=1 => j=l+s=1) there are three possible 
values of mj: -1, 0, +1.  Similarly for the final state (6S,6P:  l=1, s=1 => j=l+s=2) there are five 
possible values of mj: -2,-1,0,1,2.  In the absence of a magnetic field, states differing only in the 
quantum number mj  all have the same energy (are degenerate).  However, in the presence of a 
magnetic field the degeneracy is broken. Taking the z-axis to be along the axis of the magnet in 
our experiment , you can see that states with differing values of mj will have a different z-
component of the magnetic moment.  Since it is this magnetic moment that interacts with any 
external field, the energies of states with different mj’s being otherwise identical will differ when 
a magnetic field is present.  From this argument, we might expect that when we turn on the field 
or single line at 546.07 nm would split into 3x5=15 lines corresponding to transitions between 
states of each different mj.  However, this is not the case.  Instead, we see 9 lines.  This is because 
transitions with |$ mj |>1 are not present.  This is an example of a so-called “selection rule”.  The 
selection rule  |$ mj |> 1 is related to the fact that the photons that must be emitted to allow the 
transition to occur (hence the spectral lines!)  must be emitted as electric dipole radiation.  The 
allowed transitions are shown in the figure below 
 

 
 
The splitting of the lines is given by the strength of the external field and by the intrinsic 
magnetic moment of the coupled electron state.  The magnetic contribution to the total energy is 
given by 
 
    jBmgE 0%#$  
 

                                                 
2 As an aside, note that Pauli exclusion doesn’t require opposite electron spins since the two 
electrons are never both in the same state, e.g. 7S goes to 6P, but not to 6S. 
 



where 0% is the Bohr Magneton 
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By measuring the frequency shift between the adjacent rings of the split 546.07 nm line of 
mercury in a magnetic field, we obtain an estimate for E$ . You will know B independently 
and you can calculate the initial and final g’s and mj’s from the considerations above. 
Thence, you should obtain a value for the Bohr Magneton, 0% . 
 
 
Tasks 
 
Concentrating on the three central lines in the multiplet  (corresponding to $mj=0), make a plot of 
the frequency shift of each of these lines from the frequency of the original no-field line. versus 
magnetic field strength.  By fitting these frequency shifts to the form expected from the equations 
above, measure the value (and uncertainty) of the Bohr magneton.   
 
Hints: 
 
Setup the apparatus as shown in the diagram and described in the manufacturer’s hardware setup 
documentation.  Use the camera to record photographs as a function of field strength.  Make sure 
you note the magnet current for each photograph.  Obtain a calibration for the electromagnet from 
the instructor to allow you to convert this to magnetic field strength.  Note:  Do not leave 
the magnet current above 0.7 Amps for more than about 10-15 seconds. 
The magnet overheats easily and could be ruined.  You will use these 
photographs to analyze the Zeeman splitting as a function of field strength.  Note that the 
polarization varies between different transitions in the multiplet allowing you to eliminate all but 
the subset of the transitions that you intend to study.   
 

 

 



1. Electromagnet (Max. 1.3 T) 
2. Control unit 
3. Lens (f=15cm) 
4. Polarizer 
5. Interference filter (peak transmission wavelength 546 nm) 
6. Fabri-Perot cavity (flat mirrors) 
7. CCD camera 
8. Optical rail 
9. Computer to display and save CCD camera images. 
 
 
Understanding the Operation of the Fabri-Perot Cavity 
 
A short summary of the operation of the Fabri-Perot is given below.  However, you will find that 
A. Melissinos, “Experiments in Modern Physics” has more detail.  Together, these two resources 
should enable you to interprete your data. Copies of Melissinos are available in the laboratory.  
Be aware that in an effort to make things clearer I’ve chosen to use slightly different notation than 
Melissions!  In particular, note that I have chosen to define as twice the number of 
wavelengths required to span the Fabri-Perot cavity, rounding down to the nearest integer when 
the length of the cavity is not an integer number of wavelengths. In other words, in my notation, 

 is the number of whole wavelengths required for a round trip passage of the cavity at normal 
incidence.  Melissinos however defines  by 

0n

0n

0n (/20 tn )  where t is the length of the cavity. 
This is generally not an integer.  In Melissinos therefore, the quantity *'0  is the inte
corresponding to my .  Also, I chose to call the innermost transmitted ring, the zero’th ring 
while Melissinos calls it the first ring.  Therefore, Mellisinos’ definition of the ring number p 
differs from mine by one.  Despite these differences, our definitions of the important quantity *  
(which enters into your data analysis) are the same.  So, in the end it doesn’t matter whether you 
chose to follow my exposition below or that of Melissinos. 

n ger 

0n

 
The Fabri-Perot cavity consists of two parallel semi-transmissive mirrors placed a fixed distance 
apart.  The cavity thus formed is non-transmissive to light that is perpendicularly incident on the 
cavity unless  the distance between the plates is an integer number of half wavelengths.  When the 
distance between the plates is an integer number of half wavelengths, any number of  round-trip 
(back and forth) traversals of the cavity brings the light  it back into phase with the incident wave.  
The incident wave and all subsequent round-trip waves in the cavity will therefore add 
constructively to form a standing wave in the cavity.  Because it is built up with multiple 
reflections adding coherently, the standing wave inside the cavity is much more intense than the 
entering wave.   Although the right hand mirror may only be slightly transmissive, the intensity of 
the standing wave inside the cavity is sufficiently high that the intensity of  light leaking through 
the right hand mirror, and constituting the transmitted beam, is fairly significant.  In fact, one can 
show that the intensity of the transmitted beam is close to that of beam incident on the cavity. 
 
The diagram below shows a transmissive Fabri-Perot cavity with 5 half-wavelengths fitting in the 
cavity forming a standing wave.  In the diagram, light is incident from the left. 



      
 
The diagram below shows a non-transmissive Fabri-Perot cavity with a non-integer number of 
half-wavelengths in the cavity and thus no standing wave.  Note that the right hand mirror is 
shifted left  compared with the above diagram, so the cavity is slightly shorter than 5 half-
wavelengths. 

   
 
 
However, light rays incident on the cavity are not always perpendicular to the cavity mirrors.  If 
the source of light is not perfectly collimated, some light rays may be incident on the cavity at an 
angle.  For example, a point-like light source will emit a spherical phasefront.  These light rays 
can also be transmitted through the cavity provided that a round-trip in the cavity brings them 
back into phase with the original beam.  
 
This situation is illustrated in the diagram below where the original wave is incident from the red 
and blue (light and dark) intervals represent half-wavelengths.  The dotted lines represent 
phasefronts (planes of equal phase) while + is the angle of incidence.  The cavity transmits when 
the angle + is such that the distance a+b is equal to an integer number of wavelengths 
 

(nba #&  
 
In the diagram below n=5.  When the angle + is such that this condition is satisfied, all the beams 
reflecting back and forth within the cavity are in phase as they travel to the right.  Therefore they 
interfere constructively forming a standing wave in the cavity.  As in the case of normal 
incidence, the standing wave inside the cavity is much more intense than the beam entering the 
cavity,  This causes the transmitted beam to have an intensity close to that of the incident beam. 
In contrast, rays entering at angles close to, but not equal to, + will not experience constructive 
interference, no standing wave will be formed, and the cavity will transmit those rays extremely 
weakly or not at all. 



 
 
It may seem unlikely to you that a standing wave could be produced by beams travelling at an 
angle like this to the cavity faces.  After all, the forward traveling rays inside the cavity above 
don’t actually appear to overlap.  So how can a standing wave be formed?  Remember that this is 
all supposed to be happening at small angles and the diagram above greatly exagerates the angles.  
In reality all the angles in question are much smaller, so subsequent reflected waves within the 
cavity do in fact mostly overlap and do therefore form a standing wave (provided of course that, 
as discussed, a traversal of the cavity serves to bring the wave back into phase with the incoming 
wave).   Similarly, the number of waves n corresponding to the distance a+b is much greater in 
reality than the 5 waves shownin the diagram. For our 2cm long cavity, a realistic n is an integer 
around 4x104.  
 
The left hand side of the above criterion above can be rewritten 
 

- . - ./ 0 - . - ./ 0
- . - .+
+
++++ cos2

cos
1cos212coscos/cos/

2

ttttba #
'&

#&#&  

leading to 
- . (+ nt n #cos2  

 
where we have replaced + with n+ to emphasize that there are multiple angles satisfying this 
equation, one for each of the integers .   Therefore, if the incoming beam contains rays at all 
angles, such as rays exiting from a point-like source,  many transmission will be evident at a 
number of angles.    A beam exiting from a point-like source will have spherical wavefronts even 
after passing through any combination of  spherical lenses.  Such a beam consists of rays whose 
angle of incidence is proportional to the distance from the optical axis.  The transmission pattern 
of the cavity will therefore consist of a number of concentric circles whose spacing is depends on 
the  radius of curvature of the incoming phasefronts.   

n

 
Note that since - . 1cos0 11 n+ , the number of wavelengths n goes down as we go from the 
inner rings to the outer rings.  If a normally incident ray completes a total number  of whole 0n



wavelengths during a round trip in the cavity, then for the pth transmitted ring (counting 
outwards from the center and calling the innermost ring the 0th ring) 

 
pnnn p ')# 0  

 
np is known as the “order” of the pth ring.   However, it is unlikely that the spacing of the plates is 
a precise integer multiple of the wavelengh.  Therefore, a normally incident ray is not likely to be 
transmitted.3  The total round trip length 2t of the Fabri-Perot cavity can be written as 
 

(* )(2 0 &# nt  
 

where  is the round-trip length of the cavity in wavelengths (for normal incidence) rounded 
down to the nearest integer, and * is the leftover fraction of a wavelength.  The quantity 

0n
*  is 

sometimes known as the “fractional order” and is an important quantity for the purposes 
of this lab. 
  
Since we are in the small angle approximation, we can rewrite the criterion for transmission 
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where we have also re-labeled the transmission angle according to the number of the 
corresponding ring p.  We can rewrite pn '0  

*
(

** ''#''&#' ptpnpn 2)( 00  

And substituting back into the previous expression and solving for p+  gives us the angle 
of transmission of the pth ring 

*(+ &# p
tp 2

 

 
If the radius of curvature of the beam incident on the Fabri-Perot cavity is R, and we were to 
measure the radius of subsequent concentric circles at the output plate of the cavity (don’t try 
this!) their radii would be given by 
 

- . *(++ &#3# p
t

r ppp 2
tan R R

 
 
I’ve assumed that the length t of the cavity is much smaller than R  and that the small angle 
approximation holds. 
                                                 

n
3 However, there will of course still be angles + which do form standing waves, so the ring 
pattern does not depend on the cavity being an integer number of wavelengths long. 



 
We’re almost there.   Recall that the action of a spherical lens or any combination of spherical 
lenses is ultimately simple.  It is to turn an incoming ray through an angle proportional to the 
distance from the lens axis.  Therefore, when we use a lens to image the output of the Fabri-Perot 
cavity onto a CCD, all we are ultimately doing is multiplying the right hand side of the above 
equation by some constant factor C’.  We might as well absorb the entire factor out front into a 
constant C.  In other words, the position of the concentric rings on the CCD or TV screen is just 
 

*&# pCRp  
 
By fitting  versus p to the above equation we can extract both C and the fractional order *.  pR
Finally, recall that 
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So, if two very close wavelengths (1 and (2 enter a Fabri-Perot cavity, so close that they both 
have the same , then we can calculate their difference using 0n
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