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7.9 Transformation Method: Exponential and
Normal Deviates

In the previous section, we learned how to generate random deviates
with a uniform probability distribution, so that the probability of generating
a number between z and z + dz, denoted p(z)dz, is given by

0<z<l (7.2.1)

_ fdx
plz)dz = {0 otherwise

The probability distribution p(z) is of course normalized, so that
oo
/ p(z)dz =1 (7.2.2)
—o0

Now suppose that we generate a uniform deviate = and then take some
prescribed function of it, y(z). The probability distribution of y, denoted
p(y)dy, is determined by the fundamental transformation law of probabilities,
which is simply

Ip(y)dy| = |p(z)dz| (7.2.3)

or

Mw=p@)%\ (7.2.4)

Exponential Deviates

As an example, suppose that y(z) = —In(z), and that p(z) is as given
by equation (7.2.1) for a uniform deviate. Then

. ]
ply)dy = ‘aﬂ dy = e~Vdy (7.2.5)

which is distributed exponentially. This exponential distribution occurs fre-
quently in real problems, usually as the distribution of waiting times between
independent Poisson-random events, for example the radioactive decay of nu-
clei. You can also easily see (from 7.2.4) that the quantity y/A has the prob-
ability distribution Ae=?Y.

So we have
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Figure 7.2.1. Transformation method for generating a random deviate y from a known
probability distribution p(y). The indefinite integral of p(y) must be known and invertible.
A uniform deviate z is chosen between 0 and 1. Its corresponding y on the definite-integral
curve is the desired deviate.

FUNCTION EXPDEV(IDUM)
Returns an exponentially distributed, positive, random deviate of “unit mean, using
RAN1(IDUM) as the source of uniform deviates.

EXPDEV=-L0G (RAN1 (IDUM)}

RETURN

END

Let’s see what is involved in using the above transformation method to
generate some arbitrary desired distribution of y’s, say one with p(y) = f (v)
for some positive function f whose integral is 1. (See Figure 7.2.1.) According
to (7.2.4), we need to solve the differential equation

dz
i fy) (7.2.6)

But the solution of this is just = F(y), where F(y) is the indefinite integral
of f(y). The desired transformation which takes a uniform deviate into one
distributed as f(y) is therefore

y(z) = F'(z) | (7.2.7)

where F~1 is the inverse function to F. Whether (7.2.7) is feasible to imple-
ment depends on whether the inverse function of the integral of f(y) is itself
feasible to compute, either analytically or numerically. Sometimes it is, and
sometimes it isn’t.

Incidentally, (7.2.7) has an immediate geometric interpretation: Since
F(y) is the area under the probability curve to the left of y, (7.2.7) is just the
prescription: choose a uniform random z, then find the value y that has that
fraction z of probability area to its left, and return the value y.
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Normal (Gaussian) Deviates

Transformation methods generalize to more than one dimension. If z1,z2,

. are random deviates with a joint probability distribution p(z1,22,...)

dzidzs ..., and if y1,¥2,... are each functions of all the z’s (same number of
y’s as z’s), then the joint probability distribution of the y’s is

a(:tl,.’liz,‘ . )

dyrdys ... (7.2.8)
a(ylay2a"’)\ 1092

p(y1,¥2,- .- )dy1dya . .. = p(1, T2, .- .) l

where |3( )/8( )| is the Jacobian determinant of the z’s with respect to
the y’s (or reciprocal of the Jacobian determinant of the y’s with respect to
the z’s).

An important example of the use of (7.2.8) is the Boz-Muller method for
generating random deviates with a normal (Gaussian) distribution,

1
ply)dy = —Z=¢ v*/2dy (7.2.9)

Consider the transformation between two uniform deviates on (0,1), 1,22,
and two quantities yi, y2,

y1 = vV —2Inz, cos 2w

(7.2.10)
y2 = vV —2Inz; sin 2wz,
Equivalently we can write
_ 1 9 2
1 =exp | —5 (1 +42)
(7.2.11)
Ig = iarctamgg
o )1

Now the Jacobian determinant can readily be calculated (try it!):

oz, 9y
Az1,22) _ |Fer Bus | o _ [ L —utre| |1 -edr2 (7.2.12)
Ao Y | 9z dzz | T € €
A(y1,92) By-  Bye V2r V2r

Since this is the product of a function of y2 alone and a function of y; aloge,
we see that each y is independently distributed according to the normal dis-
tribution (7.2.9).

One further trick is useful in applying (7.2.10). Suppose that, instead of
picking uniform deviates z; and x5 in the unit square, we instead pick v; and

—
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v2 as the ordinate and abscissa of a random point inside the unit circle around
the origin. Then the sum of their squares, R = v? + v2 is a uniform deviate,
which can be used for z;, while the angle that (v1,v2) defines with respect to
the v; axis can serve as the random angle 2rzs. What’s the advantage? It’s
that the cosine and sine in (7.2.10) can now be written as v; /vR and v2/VR,
obviating the trigonometric function calls!

We thus have

FUNCTION GASDEV(IDUM)

Returns a normally distributed deviate with zero mean and unit variance, using RAN1 (IDUM)
as the source of uniform deviates.

DATA ISET/0/

IF (ISET.EQ.O) THEN
Vi=2_*RAN1(IDUM)-1.
V2=2.%RAN1(IDUM)-1.
R=V1i**2+V2%%2 see if they are in the unit circle,

IF(R.GE.1.)GO TO 1 and if they are not, try again.
FAC=SQRT(-2.*LOG(R)/R) Now make the Box-Muller transformation
GSET=V1*FAC to get two normal deviates. Return one and save the other for next

We don’t have an extra deviate handy, so
pick two uniform numbers in the square extending from -1 to 41 in
each direction,

GASDEV=V2*FAC time.
ISET=1 Set flag.
ELSE We have an extra deviate handy,
GASDEV=GSET SO return it,
ISET=0 and unset the fiag.
ENDIF
RETURN

END

REFERENCES AND FURTHER READING:

Knuth, Donald E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The
Art of Computer Programming (Reading, Mass.: Addison-Wesley),
pp. 116fT.

7.3 Rejection Method: Gamma, Poisson,
Binomial Deviates

The rejection method is a powerful, general technique for generating ran-
dom deviates whose distribution function p(x)dz (probability of a value occur-
ring between z and z + dz) is known and computable. The rejection method
does not require that the cumulative distribution function [indefinite integral
of p(z)] be readily computible, much less the inverse of that function — which
was required for the transformation method in the previous section.

The rejection method is based on a simple geometrical argument:

Draw a graph of the probability distribution p(z) that you wish to gen-
erate, so that the area under the curve in any range of z corresponds to the
desired probability of generating an z in that range. If we had some way of
choosing a random point n two dimensions, with uniform probability in the
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area under your curve, then the z value of that random point would have the
desired distribution.

Now, on the same graph, draw any other curve f(z) which has finite
(not infinite) area and lies everywhere above your original probability distri-
bution. (This is always possible, because your original curve encloses only
unit area, by definition of probability.) We will call this f(x) the comparison
function. Imagine now that you have some way of choosing a random point
in two dimensions that is uniform in the area under the comparison function.
Whenever that point lies outside the area under the original probability dis-
tribution, we will reject it and choose another random point. Whenever it lies
inside the area under the original probability distribution, we will accept it. It
should be obvious that the accepted points are uniform in the accepted area,
so that their z values have the desired distribution. Tt should also be obvious
that the fraction of points rejected just depends on the ratio of the area of
the comparison function to the area of the probability distribution function,
not on the details of shape of either function. For example, a comparison
function whose area is less than 2 will reject fewer than half the points, even
if it approximates the probability function very badly at some values of z, e.g.
remains finite in some region where z is zero.

It remains only to suggest how to choose a uniform random point in two
dimensions under the comparison function f(z). A variant of the transforma-
tion method (§7.2) does nicely: Be sure to have chosen a comparison function
whose indefinite integral is known analytically, and is also analytically invert-
ible to give = as a function of “area under the comparison function to the left
of z.” Now pick a uniform deviate between 0 and A, where A is the total area
under f(z), and use it to get a corresponding z. Then pick a uniform deviate
between 0 and f(z) as the y value for the two-dimensional point. You should
be able to convince yourself that the point (z,y) is uniformly distributed in
the area under the comparison function f(z).

An equivalent procedure is to pick the second uniform deviate between
zero and one, and accept or reject according to whether it is respectively less
than or greater than the ratio p(z)/f(z)-

So, to summarize, the rejection method for some given p(z) requires that
one find, once and for all, some reasonably good comparison function f(z).
Thereafter, each deviate generated requires two uniform random deviates,
one evaluation of f (to get the coordinate y), and one evaluation of p (to
decide whether to accept or reject the point , y). Figure 7.3.1 illustrates the
procedure. Then, of course, this procedure must be repeated, on the average,
A times before the final deviate is obtained.

Gamma Distribution

The gamma distribution of integer order ¢ > O is the waiting time to
the ath event in a Poisson random process of unit mean. For example, when
a = 1, it is just the exponential distribution of §7.2, the waiting time to the

first event.
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F.igure 7.3.1. Rejection method for generating a random deviate z from a ili
distribution p(z) that is everywhere less than some other function f(z). Tiii?:ng;grm?g;lilgi
method is first used to generate a random deviate z of the distribution f (compare Figure
721) A second uniform deviate is used to decide whether to accept or reject that z. If it
is rejected, a new deviate of f is found; and so on. The ratio of accepted to rejected ;;oints
is the ratio of the area under p to the area between p and f.

A gamma deviate has probability p,(z)dz of occurring with a value be-
tween z and z + dx, where

za—le—m

pa(z)dz = Wda: z>0 (731)

To generate deviates of (7.3.1) for small values of a, it is best to add up a
e).(ponentially distributed waiting times, i.e. logarithms of uniform deviates.
Since the sum of logarithms is the logarithm of the product, one really has
only to generate the product of a uniform deviates, then take the log.

For larger values of a, the distribution (7.3.1) has a typically “bell-
shaped” form, with a peak at £ = a and a half-width of about /a.

'We will be intercsted in several probability distributions with' this same
qualitative form. A useful comparison function in such cases is derived from
the Lorentzian distribution

sy =1 (5 ) (7.3.2)

whose inverse indefinite integral is just the tangent function. It follows that

:pe z-coordinate of an area-uniform random point under the comparison func-
ion

@) =137 % (7.3.3)

z — 20)%/a§
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for any constants ao, co, and o, can be generated by the prescription
z = ag tan(nU) + o (7.3.4)

where U is a uniform deviate between 0 and 1. Thus, for some specific “bell-
shaped” p(z) probability distribution, we need only find constants ag, ¢o, Zo,
with the product agco (which determines the area) as small as possible, such

that (7.3.3) is everywhere greater than p(z).
Ahrens has done this for the gamma distribution, yielding the following

algorithm (as described in Knuth):

FUNCTION GAMDEV(IA,IDUM)

Returns a deviate distributed as a gamma distribution of integer order IA, i.e. a waiting
time to the IAth event in a Poisson process of unit mean, using RAN1(IDUM) as the source
of uniform deviates.

IF(IA.LT.1)PAUSE
IF(IA.LT.6)THEN Use direct method, adding waiting times.

X=1.

no[t1] 5=1,1a
X=X*RAN1 (IDUM)

[i1]cONTINUE
=-L0G(X)
ELSE Use rejection method.

Vi=2.+RAN1(IDUM)-1. These four lines generate the tangent of a random angle, i.e. are
Vv2=2,*RAN1 (IDUM)-1. equivalent to Y = TAN(3.14159265 * RAN1(IDUM)).

IF(V1%%24V2%%2 .GT.1.)G0 TO 1
Y=V2/V1
AM=TA-1
S=SQRT(2.*AM+1.)
X=S*Y+AM We decide whether to reject X:

IF(X.LE.0.)GO TO 1 Reject in region of zero probability.

E=(1.+Y*%2)*EXP (AM*LOG (X/AM) -S#Y)  Ratio of probability fn. to comparison fn.
IF(RAN1(IDUM) .GT.E)GO TO 1 Reject on basis of a second uniform deviate.
ENDIF
GAMDEV=X
RETURN
END

Poisson Deviates

The Poisson distribution is conceptually related to the gamma distribu-
tion. It gives the probability of a certain integer number m of unit rate Poisson
random events occurring in a given interval of time z, while the gamma dis-
tribution was the probability of waiting time between z and z + dz to the
mt* event. Note that m takes on only integer values > 0, so that the Poisson
distribution, viewed as a continuous distribution function py (m)dm, is zero
everywhere except where m is an integer > 0. At such places, it is infinite,
such that the integrated probability over a region containing the integer is
some finite number. The total probability at an integer j is

Jte rie~=
Prob(y) =/ pz(m)dm = 7 (7.3.5)

1—€
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Figure 7.3.2. Rejection methoq as applied to an integer-valued distribution. The method
is Perforrped on the step function shown as a dashed line, yielding a real-valued deviate.
This deviate is rounded down to the next lower integer, which is output.

At first sight this might seem an unlikely candidate distribution for the
rejection method, since no continuous comparison function can be larger than
the infinitely tall, but infinitely narrow, Dirac delta functions in p;(m). How-
ever there is a trick that we can do: Spread the finite area in the spike at 7
uniformly into the interval between 7 and 7 + 1. This defines a continuous
distribution gz(m)dm given by

[m}e_x

ga(m)dm = T—"— l (7.3.6)

wl.xere [m] represents the largest integer less than m. If we now use the
rejection method to generate a (non-integer) deviate from (7.3.6), and then
take the integer part of that deviate, it will be as if drawn from the desired
distribution (7.3.5). (See Figure 7.3.2.) This trick is general for any integer-
valued probability distribution.

]?‘or z large enough, the distribution (7.3.6) is qualitatively bell-shaped
(z}lbelt with a bell made out of small, square steps), and we can use the same
kind of Lorentzian comparison function as was already used above. For small
z, we can generate independent exponential deviates (waiting times between
evgnts); when the sum of these first exceeds z, then the number of events
which would have occurred in waiting time z becomes known and is one less
than the number of terms in the sum.

These ideas produce the following routine:

FUNCTION POIDEV (XM, IDUM)

E(e).tums gs a floating-point number an integer value that is a random deviate drawn from a
isson distribution of mean XM, using RAN1 (IDUM) as a source of uniformr. i

) andom .
PARAMETER (PI=3.141502654) deviates

?:T% OLDM /-1./ Flag for whether XM has changed since last call.
XM.LT.12.) THEN Use direct method.
IF (XM.NE.OLDM) THEN
OLDM=XM
ENDI(I;:EXP(-XM) If XM is new, compute the exponential.

=1
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T=1.
EM=EM+1. Instead of adding exponential deviates it is equivalent to multiply
T=T*RAN1(IDUM) uniform deviates. Then we never actually have to take the
IF (T.GT.G) GO TO 2 fog, merely compare to the pre-computed exponential.
ELSE Use rejection method.
IF (XM.NE.OLDM) THEN If XM has changed since the last cali, then precompute some functions
OLDM=XM which occur below.
SQ=SQRT (2. *XM)
ALXM=ALOG (XM)
G=XM*ALXM-GAMMLN (XM+1.) The function GAMMLN is the natural log of the gamma func-
ENDIF tion, as given in §6.2.
Y=TAN(PI*RAN1(IDUM)) Y is a deviate from a Lorentzian comparison function.
EM=SQ*Y+XM EM is Y, shifted and scaled.
IF (EM.LT.0.) GO TO 1 Reject if in regime of zero probability.
EM=INT(EM) The trick for integer-valued distributions.

T=0.9% (1. +Y*%2) +EXP (EM*ALXM-GAMMLN (EM+1.) -G) The ratio of the desired distribution to
IF (RAN1(IDUM).GT.T) GO TO 1 the comparison function; we accept or reject by comparing it

ENDIF to another uniform deviate. The factor 0.9 is chosen so that
POIDEV=EM T never exceeds 1.

RETURN

END

Binomial Deviates

If an event occurs with probability ¢, and we make n trials, then the
number of times m that it occurs has the binomial distribution,

/J . Pr.g(m)dm = (’;)«f (1-q)™? (7.37)

j—€

The binomial distribution is integer valued, with m taking on possible
values from 0 to n. It depends on two parameters, n and g, so is correspond-
ingly a bit harder to implement than our previous examples. Nevertheless,
the techniques already illustrated are sufficiently powerful to do the job:

FUNCTION BNLDEV(PP,N,IDUM)
Returns as a floating-point number an integer vaiue that is a random deviate drawn from
a binomial distribution of N trials each of probability PP, using RAN1(IDUM) as a source
of uniform random deviates.

PARAMETER (PI=3.141592664)

DATA NOLD /-1/, POLD /-1./ Arguments from previous calls.

IF(PP.LE.O.6)THEN The binomial distribution is invariant under changing PP to 1.-PP, if

P=PP we also change the answer to N minus itself; we'll remember
ELSE to do this below.
P=1.-PP
ENDIF
AM=N*P This is the mean of the deviate to be produced.
IF (N.LT.25)THEN Use the direct method while N is not too large. This can require up
BNLDEV=0. to 25 calls to RAN1.

po[11] J=1,N
IF (RAN4 (IDUM) . LT .P) BNLDEV=BNLDEV+1.

[fi]contINnuE
ELSE IF (AM.LT.1.) THEN If fewer than one event is expected out of 25 or more trials, then the
G=EXP (-AM) distribution is quite accurately Poisson. Use direct Poisson
T=1. method.

1
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po[12] J=0,N
T=T*RAN1 (IDUM)
IF (T.LT.G) GO TO 1
[i2lconTINGE
J=N
BNLDEV=J
ELSE Use the rejection method.
IF (g}iN;:.NDLD) THEN If ¥ has changed, then compute useful quantities.
=
OLDG=GAMMLN (EN+1.)
NOLD=N
ENDIF
IF (;’éNf.P;JLD) THEN If P has changed, then compute useful quantities.
t .
PLOG=LOG(P)
PCLOG=LOG(PC)
POLD=P
ENDIF
SQ=SQRT (2. *AM*PC)

The following code should by now s familiar:
YoTAN(PT<RAHS (IDUM)) eem familiar: rejection method

with a Lorentzian comparison function.

EM=8Q*Y+AM
IF (EM.LT.O0..0R.EM.GE.EN+1.) GO TO 2 Reject.
EM=INT (EM) Trick for integer-valued distribution.

T=1.2+8Q# (1. +Y*%2)*EXP(OLDG-GAMMLN (EM+1.)
-GAMMLN (EN-EM+1 . ) +EM*PLOG+ (EN-EM) *PCLOG)
IF (RAN1(IDUM).GT.T) GO TO 2 Reject. This happens about 1.5 ti i
Ip i g about 1.5 times per deviate, on av-
ENDIF

l]ig Tl(}:}}NE.PP) BNLDEV=N-BNLDEV Remember to undo the symmetry transformation.
END

REFERENCES AND FURTHER READING:

Knuth, Donald E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The
Art of Cf?mputer Programming (Reading, Mass.: Addison-Wesley),
pp. 120fF.

7.4 Generation of Random Bits

. This topic is not very useful for programming in high-level languages, but
it can t{e quite useful when you have access to the machine-language level of
a machine or when you are in a position to build special-purpose hardware
out of readily available chips.

The problem is how to generate single random bits, with 0 and 1 equally
probable. Of course you can just generate uniform random deviates between
zero and one and use their first bit (i.e. test if they are greater than or less
than‘ 05) However this takes a lot of arithmetic; there are special purpose
a]?phcatlons, such as real-time signal processing, where you want to generate
bits very much faster than that.
tati One' method for generating random bits, with two variant implemen-

ations, is based on the theory of “primitive polynomials modulo 2.” It is




