Chapter 19
The First Law of Thermodynamics

The first law of thermodynamics is an extension of the principle of *conservation of energy*. It includes the transfer of both mechanical and thermal energy. First of all we need to define the concept of a thermodynamic system. Next, we will describe how “heat” and “work” are the two means of transferring energy into or out of the system.

1 Thermodynamic Systems

We have separately studied the two forms of energy—work and heat. In this chapter we will combine these two properties to see how they can change the state of a thermodynamic system. In general, a **thermodynamic system** is any collection of objects having the potential to exchange energy (mechanical or thermal) with its surroundings. A **thermodynamic process** describes the changes in state of a *thermodynamic system* (i.e., changes in p, V, T, and n).

![Diagrams illustrating thermodynamic processes](https://example.com/thermodynamics-diagrams)

Copyright © 2004 Pearson Education, Inc., publishing as Addison-Wesley.
2 Work Done During Volume Changes

In this section, we investigate the amount of work done by a gas (i.e., by the system).

- Positive work – piston moves resulting in an expanding volume.
- Negative work – piston moves resulting in a decreasing volume.

The work done by the gas depends on the force it applies to the piston and the distance the piston moves.

\[dW = F \, dx \quad \Rightarrow \quad dW = p \, A \, dx \]

where \(A \, dx = dV \), the differential change in the volume of the system. Thus, the differential work done by the gas is proportional to the differential change in volume (i.e., \(dW = p \, dV \)).

The work done by the gas when its volume changes from \(V_1 \rightarrow V_2 \) is:

\[W = \int_{V_1}^{V_2} p \, dV \quad \text{(work done in a volume change)} \quad (1) \]

Notice that this equation describes the area under the \(p-V \) curve between \(V_1 \) and \(V_2 \). The manner and method by which a system moves from state “1” to state “2” is shown as a thermodynamic path on the \(p-V \) diagram. We assume that when a system changes from state “1” to state “2”, it does so quasistatically, that is to say, that the state variables \((p, V, T, \text{and } n) \) are well defined quantities describing the “system” (i.e., the gas) on every part of the thermodynamic path.
2.1 Work done by an isothermal expansion

Let’s look at the work done by the isothermal expansion of a gas as the volume changes from V_1 to V_2.

$$W = \int_{V_1}^{V_2} p\,dV = \int_{V_1}^{V_2} \frac{nRT}{V} \,dV = nRT \ln \left(\frac{V_2}{V_1}\right) \quad \text{(isothermal)}$$

Ex. 3 Two moles of an ideal gas are compressed in a cylinder at a constant temperature of 65.0°C until the original pressure has tripled.
(a) Sketch a pV-diagram for this process. (b) Calculate the amount of work done.

3 Paths Between Thermodynamic States

We will learn the properties of 4 thermodynamic paths in this chapter.

1. Isothermal – no change in temperature ($\Delta T = 0$)
2. Isobaric – no change in pressure ($\Delta p = 0$)
3. Isochoric – no change in volume ($\Delta V = 0$)

4. Adiabatic – no exchange of thermal energy ($Q = 0$)

We will discuss the *adiabatic* process in more detail later.

4 Internal Energy and the First Law of Thermodynamics

In order to understand the concept of “internal energy,” we must begin with the fact that matter consist of atoms and molecules that contain *kinetic* and *potential* energies. The **internal energy** of a system is the sum of kinetic energies of all of its constituent particles, plus the sum of all the potential energies of interaction among these particles.

Let’s imagine that we introduce some thermal energy Q into a system. How can it respond to the increase of energy? It can either raise the temperature of the gas (i.e., increase its internal energy), or it can cause the system to do mechanical work W on the external environment, or both. This simple *conservation of energy* principle can be written as:
\[Q = \Delta U + W \quad \text{(first law of thermodynamics)} \] (2)

where \(\Delta U \) is the change in internal energy, and \(W \) is the work done by the system.

Another way of looking at the first law of thermodynamics is to rewrite the previous equation as:

\[\Delta U = Q - W \] (3)

The change in internal energy of a system during any thermodynamic process depends only on the initial and final states, not on the thermodynamic path leading from one state to another. The thermal energy \(Q \) and the work \(W \) will depend on the thermodynamic path, however, the change in internal energy \(\Delta U \) is independent of the thermodynamic path. As we will see later, the change in internal energy \(\Delta U \) depends only on the change in temperature \(\Delta T \) (i.e., \(\Delta U \sim \Delta T \)).

Ex. 9 A gas in a cylinder expands from a volume of 0.110 m\(^3\) to 0.320 m\(^3\). Heat flows into the gas just rapidly enough to keep the pressure constant at 1.65 \(\times \) 10\(^5\) Pa during the expansion. The total heat added is 1.15 \(\times \) 10\(^5\) J. (a) Find the work done by the gas. (b) Find the change in internal energy of the gas. (c) Does it matter whether the gas is ideal? Why or why not?

4.1 Cyclic Processes

In a cyclic process, a thermodynamic system exchanges heat and work as described by a thermodynamic process going from state \(a \) to state \(b \).

In a cyclic process:

1. The work done by the gas going from \(a \to b \) is the area under the curve (+)
2. The work done by the gas going from \(b \to a \) is the area under the curve (-)
3. The total work done by the gas going from \(a \to b \to a \) is the shaded area between the two curves.
4. The total change in internal energy ΔU is zero going from $a \rightarrow b \rightarrow a$ because you start at temperature T_a and you finish at temperature T_a (i.e., $\Delta T = 0$).

Q 19.24 A thermodynamic system undergoes a cyclic process as shown in Fig. Q19.24. The cycle consists of two closed loops: I and II. (a) Over one complete cycle, does the system do positive or negative work? (b) In each loop, is the net work done by the system positive or negative? (c) Over one complete cycle, does heat flow into or out of the system? (d) In each loop, does heat flow into or out of the system? Explain.

Ex. 13 The pV diagram in Fig. E19.13 shows a process abc involving 0.450 mol of an ideal gas. (a) What was the temperature of this gas at points a, b, and c? (b) How much work was done “by” or “on” the gas in this process? (c) How much heat had to be added during the process to increase the internal energy of the gas by 15,000 J?
Figure 1: University Physics–Figure Q19.24

Figure 2: University Physics–Figure E19.13
5 Kinds of Thermodynamic Processes

What does the first law of thermodynamics reveal for each of the following processes?

1. Adiabatic – $Q = 0$. $\Delta U = -W$

2. Isochoric – $\Delta V = 0$. $\Delta U = Q$ because $W = 0$

3. Isobaric – $\Delta P = 0$. None of the three quantities ΔU, Q, and W is zero. However, we can easily calculate the work. $W = p(V_2 - V_1)$.

4. Isothermal – $\Delta T = 0$. $\Delta U = 0$ and $Q = W = nRT \ln(V_2/V_1)$.
6 Internal Energy of an Ideal Gas

When studying the properties of free expansion, we see that the temperature T is constant. This means that the internal energy U is constant even though p and V do change. Many experiments have shown that when a low-density gas undergoes a free expansion, its temperature does not change. Therefore $U \sim T$ and does not depend on p and V.

Conclusion: The internal energy of an ideal gas depends only on its temperature, not on its pressure or volume. $U \sim T$

7 Heat Capacities of an Ideal Gas

In this section, we want to identify the thermal energy Q transferred in each of the 4 thermodynamic processes. We already know that $Q = 0$ for an adiabatic process. Secondly, we know that $Q = W = nRT \ln(V_2/V_1)$ for an isothermal process. As a result, we only need to identify the heat exchanged for isobaric and isochoric processes. We appeal to our knowledge of heat exchange as described in the previous chapter, namely, $Q = nC\Delta T$.

The thermal energy transferred in an *isobaric* process is:

$$Q_p = nC_p\Delta T \tag{4}$$

The thermal energy transferred in an *isochoric* process is:

$$Q_V = nC_V\Delta T \tag{5}$$

While C_p and C_V have the same units [J/(mol·K)], they are not equal to each other. However, there is a relationship between C_p and C_V. Let’s see what it is. First of all, notice that in Eq. 5, that $W = 0$, so $\Delta U = Q_V = nC_V\Delta T$.

$$\Delta U = Q_V = nC_V\Delta T \quad \text{(for an isochoric process)} \tag{6}$$

$$\Delta U = Q_p - W = nC_p\Delta T - p\Delta V$$

$$\Delta U = nC_p\Delta T - nR\Delta T \quad \text{(for an isobaric process)} \tag{7}$$
The ΔU's in Eqs. 7 and 8 are equal to each other (see the diagram above). Both paths “begin” and “end” on the same isotherm ($\Delta U_{\text{isochoric}} = \Delta U_{\text{isobaric}}$).

Recall: The internal energy of an ideal gas depends only on its temperature, not on its pressure or volume.

$$\Delta U = nC_V \Delta T \quad \text{(for all thermodynamical paths)}$$

Using this equation, we find:

$$nC_V \Delta T = nC_p \Delta T - nR \Delta T$$

Finally, we have:

$$C_p = C_V + R \quad \text{(molar heat capacities of an ideal gas)} \quad (8)$$
Ex. 19 In an experiment to simulate conditions within an automobile engine, 0.185 mol of air at a temperature of 780 K and a pressure of 3.00×10^6 Pa is contained in a cylinder of volume 40.0 cm3. Then 645 J of heat is transferred to the cylinder. (a) If the volume of the cylinder is constant while the heat is added, what is the final temperature of the air? Assume that the air is essentially nitrogen gas, and use the data in Table 19.1 even though the pressure is not low. Draw a pV-diagram for this process. b) If instead the volume of the cylinder is allowed to increase while the pressure remains constant, repeat part (a). Draw a pV-diagram for this process.

Ex. 22 Three moles of an ideal monatomic gas expands at a constant pressure of 2.50 atm; the volume of the gas changes from 3.20×10^{-2} m3 to 4.50×10^{-2} m3. Calculate (a) the initial and final temperatures of the gas; (b) the amount of work the gas does in expanding; (c) the amount of heat added to the gas; (d) the change in internal energy of the gas.

7.1 The ratio of heat capacities

The definition of γ, the ratio of heat capacities:
\[\gamma = \frac{C_P}{C_V} \]

For monatomic gases:
\[\gamma = \frac{5}{3} \]

For diatomic gases:
\[\gamma = \frac{7}{5} \]

Remember, \(\Delta U = nC_V \Delta T \), whether the volume is constant or not.

8 Adiabatic Processes for an Ideal Gas

An adiabatic process is a process in which no heat transfer takes place between the system (i.e., the working gas), and the environment. In short, \(Q = 0 \), and from the first law of thermodynamics we have \(\Delta U = -W \). From the first law of thermodynamics we can write \(\Delta U = -W \), or \(dU = -dW \):

\[nC_V \, dT = -p \, dV = -\frac{nRT \, dV}{V} \]

\[nC_V \, dT + nRT \, \frac{dV}{V} = 0 \]

\[\frac{dT}{T} + \frac{R \, dV}{C_V \, V} = 0 \]

\[\frac{R}{C_V} = \frac{C_P - C_V}{C_V} = \gamma - 1 \]

where \(\gamma = C_P/C_V \), the ratio of specific heats. Integrating both sides, we obtain

\[TV^{\gamma-1} = \text{constant} \quad \text{or} \quad PV^\gamma = \text{(constant)} \]
Work done along an adiabat

\[W = \int_{V_i}^{V_2} p\,dV = \frac{1}{\gamma - 1} (P_1 V_1 - P_2 V_2) \]

or

\[W = n C_v (T_1 - T_2) = n C_v \Delta T \]

Ex. 28 Five moles of monatomic ideal gas have initial pressure 2.50 × 10³ Pa and initial volume 2.10 m³. While undergoing an adiabatic expansion, the gas does 1480 J of work. What is the final pressure of the gas after the expansion?