
Chapter 14

Periodic Motion

1 Describing Oscillation

First, we want to describe the kinematical and dynamical quantities associated
with Simple Harmonic Motion (SHM), for example, x, vx, ax, and Fx.

x the displacement from equilibrium

Fx the restoring force Fx = −kx “Hooke’s Law”

A the amplitude, the maximum distance from equilibrium–measured in m

T the period, the time for one complete oscillation–measured in s

f the frequency, the number of oscillations (complete cycles) / sec –
measured in Hz

and

ω the angular frequency, measured in rad/s

Example of Harmonic Motion

Force vs. Displacement

Ex. 3 The tip of a tuning fork goes through 440 complete vibrations in 0.500 s.
Find the angular frequency and the period of the motion.
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2 Simple Harmonic Motion

The restoring force exerted by an ideal spring is described by Hooke’s Law
(Fx = −kx). When the restoring force is proportional to the displacement from
equilibrium, the oscillation is called simple harmonic motion.

From Newton’s second law, we can write
∑
Fx = max.

−k x = m
d2x

dt2

The solution to this differential equation is quite simple:

x(t) = A cos(ωt) or more generally x(t) = A cos(ωt+ φ)

where φ is called the phase angle. The value of φ depends on the position of the
oscillator at time t = 0. Furthermore, the angular frequency is simply

√
k/m, and

from this we can obtain f and T .

f =
ω

2π
and T =

1

f

2.1 Velocity and acceleration from x(t)

Once the equation of motion is known, it’s simple to find the velocity and acceler-
ation as a function of time (i.e., v(t) = dx/dt and a(t) = dv/dt).

v(t) =
dx

dt
=

d

dt
A cosωt = −Aω sinωt

where vmax = Aω, and

a(t) =
dv

dt
=

d

dt
(−Aω sinωt) = −Aω2 cosωt

where amax = Aω2.
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Ex. 9 When a body of unknown mass is attached to an ideal spring with force
constant 120 N/m, it is found to vibrate with a frequency of 6.00 Hz.
Find a) the period of the motion; b) the angular frequency; c) the mass
of the object.

Ex. 11 An object is undergoing SHM with a period of 0.900 s and amplitude
0.320 m. At t = 0 the object is at x = 0.320 m and is instantaneously at
rest. Calculate the time it takes the object to go (a) from x = 0.320 m
to x = 0.160 m and (b) from x = 0.160 m to x = 0.

3 Energy in Simple Harmonic Motion

Energy principles (esp. the conservation of energy) apply to simple harmonic mo-
tion as well. For example, let’s calculate the total energy of a simple harmonic
oscillator.

E =
1

2
mv2 +

1

2
kx2

Substituting x = A cosωt and v = −Aω sinωt into the above equation, we find
that:

E =
1

2
kA2 (the total energy of a SHO)

which is independent of time. In other words, E, the energy is a constant of the
motion.

Another reason for applying energy principles to a harmonic oscillator is to deter-
mine the velocity at any point in the motion. Let’s say you know the frequency
and amplitude, and you’re given the value x, (the distance from the equilibrium
position). How would you determine the velocity, v? From conservation of energy
we have:

E =
1

2
kA2 =

1

2
mv2 +

1

2
kx2
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Solving this equation for v, we find:

v = ±ω
√
A2 − x2 (velocity at a point x)

If we want to find the acceleration as a function of position (x), then we go back
to Newton’s 2nd Law (−kx = ma), and find that:

a = − k
m
x = −ω2x (acceleration at a point x)

Ex. 28 A harmonic oscillator has angular frequency ω and amplitude A. a) What
are the magnitudes of the displacement and velocity when the elastic
potential energy is equal to the kinetic energy? (Assume that U = 0 at
equilibrium.) b) How often does this occur in each cycle? What is the
time between occurrences? c) At an instant when the displacement is
equal to A/2, what fraction of the total energy of the system is kinetic
and what fraction is potential?

4 Applications of Simple Harmonic Motion

In this section we investigate the simple harmonic motion for a vertical oscillator
(i.e., gravity is one of the external forces), and a torsion oscillator (where gravity
has no effect).

4.1 Vertical SHM

When a mass is attached to the end of a vertical spring and gently released, it will
stretch the spring a distance ∆`. This location becomes the new equilibrium point
about which simple harmonic motion occurs. At this new equilibrium point, we
can write the following from Newton’s 1st Law:

∑
Fx = 0 −mg + k∆` = 0 mg = k∆`

N.B. This same point is not the equilibrium point for the spring when calculating
its potential energy. If you ever apply energy considerations to a vertical spring,
be careful not to confuse these two equilibrium positions.
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The equation of motion is the same as before. Let’s assume that +x is in the
upward direction. Then,

x = A cos(ωt+ φ)

where ω =
√
k/m and φ is the phase angle.

Ex. 36 A proud deep-sea fisherman hangs a 65.0-kg fish from an ideal spring
having negligible mass. The fish stretches the spring 0.180 m. (a) Find
the force constant of the spring? The fish is now pulled down 5.00 cm
and released. (b) What is the period of oscillation of the fish? c) What
is the maximum speed it will reach?

4.2 Angular SHM

Suppose we have a torsion balance (a horizontal disk suspended by a thin wire)
and we set it into oscillation. Instead of the spring constant k, we will define
the torsion constant κ (kappa) and write Hooke’s law as τ = −κθ, where θ is the
angular displacement from equilibrium. Applying Newton’s 2nd law to this problem
we find:

∑
τ = Iα = I

d2θ

dt2

−κθ = I
d2θ

dt2

We can write this last equation in the form of a SHO equation in the following
way:

d2θ

dt2
+
κ

I
θ = 0

where ω2 = κ/I. The equation of motion for the torsion pendulum can be written
as:

θ(t) = θo cos(ωt+ φ)

where θo is the angular amplitude, and ω =
√
κ/I.
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5 The Simple Pendulum

A common tool for keeping time is the simple, or physical pendulum. In this section
we will investigate the mechanical motion of a simple pendulum where one end of
a massless, rigid rod rotates about a pivot held at the top, and all the mass in the
system is presumed to be in a sphere at the other end. The oscillations occur in a
vertical plane about an equilibrium position defined by a plumb line.

The component of gravitational force is in the direction of the circular arc traced by
the motion of the mass at the end of the rod, mg sin θ. Likewise, the acceleration
it produces is d2s/dt2, where s = Lθ. Using Newton’s 2nd law, we can find the
equation of motion for this system.

Fx = max ⇒ −mg sin θ = m
d2s

dt2

−mg sin θ = mL
d2θ

dt2
⇒ d2θ

dt2
+
g

L
sin θ = 0 (1)

This equation almost looks like our famous SHO equation
(
d2x/dt2 + ω2x = 0

)
. In

it’s present form it can only be solved by using elliptic functions. However, if we
make the small-angle approximation sin θ ≈ θ, then we can write Eq. 1 as
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d2θ

dt2
+
g

L
θ = 0 (2)

The solution to Eq. 2 is the equation of motion we’ve seen before:

θ(t) = θo cos(ωt+ φ)

where ω =
√
g/L and θo is the maximum angular displacement.

Ex. 46 A pendulum on Mars. A certain simple pendulum has a period on
earth of 1.60 s. What is its period on the surface of Mars, where g =
3.71 m/s2.

6 The Physical Pendulum

Figure 1: Figure 14.23 from University
Physics 15th edition.

Most pendula that oscillate in the verti-
cal plane due to gravity are not as “ideal”
as the one described in the previous sec-
tion. That is, there mass is distributed
over a length L and not concentrated at
the end of a rigid, massless rod. In or-
der to describe the equation of motion of
a physical pendulum, we will appeal to
Newton’s 2nd law, however, we will use
it in its rotational form, namely,

∑
τ =

Iα.

Similar to what we did in rotational mechan-
ics, we will calculate the gravitational torque
as if all the mass were concentrated at its
center of mass. If the distance between the
axis of rotation and the center-of-mass is d,
we can write Newton’s 2nd law as:

∑
τ = I α ⇒ −mg d sin θ = I

d2θ

dt2
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d2θ

dt2
+

(
mgd

I

)
sin θ = 0

As before, we will restrict our interest to “small angle” oscillations where we can
use the approximation sin θ ≈ θ. If we do this, then we have an equation similar
to the simple pendulum:

d2θ

dt2
+

(
mgd

I

)
θ = 0

where ω2 = mgd/I, and I is the moment of inertia of the physical pendulum about
its axis of rotation.

Ex. 50 We want to support a thin hoop on a horizontal nail and have the hoop
make one complete small-angle oscillation every 2.0 s. What must the
hoop’s radius be?

Also, take a look at problem 73 (not assigned). This is another example of a
physical pendulum.

7 Damped Oscillations

As we know, in real life, there are external forces working against oscillating sys-
tems, such as friction and air resistance. This results in a less than “ideal” harmonic
oscillator solution to the differential equations that arise from applying Newton’s
2nd law.

There is one class of external forces where the friction is proportional to the velocity,
that is, some constant b times the velocity (b vx). Let’s assume we have a mass
connected to massless spring moving horizontally on a table, but now, we include
a friction term such as (−bvx). If we include such a term in Newton’s 2nd law, we
can write the following:

∑
Fx = ma ⇒ −kx− bvx = m

d2x

dt2
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The solution to this differential equation is

x(t) = Ae−(b/2m)t cos (ω′t+ φ) (3)

where ω′ is:

ω′ =

√
k

m
− b2

4m2

The amplitude of the motion is:

A(t) = Ae−bt/2m

So, the equation of motion can be written as:

x(t) = A(t) cos(ω′t+ φ) (4)

Critical Damping occurs when ω′ = 0:

b = 2
√
km (Critical Damping)

Overdamping occurs when ω′ is imaginary and Eq. 3 (see above) no longer de-
scribes the motion of the system:

b > 2
√
km (Overdamping)

Ex. 57 An unhappy 0.300-kg rodent, moving on the end of a spring with force
constant k = 2.50 N/m is acted on by a damping force Fx = −bvx.
a) If the constant b has the value 0.900 kg/s, what is the frequency of
oscillation of the mouse? b) For what value of the constant b will the
motion be critically damped?
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8 Forced Oscillations and Resonance

A damped oscillator left to itself will eventually come to rest. However, we can
maintain a constant-amplitude oscillation by applying a force that varies with time
in a periodic or cyclic way with frequence ωd. We call this additional force, a
driving force.

F (t) = Fmax coswdt

The driving frequency ωd is not the natural oscillating frequency ω′, however, the
the closer ωd is to ω′, the amplitude of the oscillation can increase dramatically,
and create a resonance.

The amplitude of the oscillation as a function of the driving frequency ωd can be
written as

A (ωd) =
Fmax√

(k −mω2
d)

2
+ b2ω2

d

When the first term in the radical is zero (i.e., k = mω2
d), then the amplitude A will

reach its maximum near ωd = ω =
√
k/m. The height of the curve is proportional

to 1/b.

Figure 2: Figure 14.28 from University Physics 15th edition.
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