Chapter 5
Applying Newton’s Laws

In this chapter we will introduce further applications of Newton’s 1% and 2"¢ law.
In summary, all of the contact forces and action-at-a-distance forces will go on the
left hand side of the Newton’s equations to obtain »_ F. Likewise, the resultant
forces will go on the right-hand side of the equation. During this course, we will
only investigate two kinds of resultant forces, (i) constant, straight-line acceleration,
and (ii) constant, centripetal acceleration due to uniform circular motion.

muv
E F=ma where ma = ma or ma = ——

1 Using Newton’s 1% Law: Particles in Equilibrium

Ex. 1 Two 25.0-N weights are suspended at opposite ends of a rope that
passes over a light, frictionless pulley. The pulley is attached to a chain
that goes to the ceiling. a) What is the tension in the rope? b) What
is the tension in the chain?

Ex. 8 In Fig. E5.8 the weight w is 60.0N a) What is the tension in the
diagonal string? b) Find the magnitudes of the horizontal forces Fj
and F5 that must be applied to hold the system in the position shown.
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Figure 1: Figure E5.8 (University Physics)



2 Using Newton’s 2"! Law: Dynamics of Particles

Ex. 15 Atwood’s Machine A 15.0 kg load of bricks hangs from one end of
a rope that passes over a small, frictionless pulley. A 28.0-kg coun-
terweight is suspended from the other end of the rope, as shown in
Fig. E5.15. The system is released from rest. a) Draw two free-body
diagrams, one for the load of bricks and one for the counterweight.
b) What is the magnitude of the upward acceleration of the load of
bricks? ¢) What is the tension in the rope while the load is moving?
How does the tension compare to the weight of the load of bricks? To
the weight of the counterweight?

28.0 kg

150k

Figure 2: Figure E5.15 (University Physics)



Prob. 90 Two blocks connected by a (massless) cord passing over a small, fric-
tionless pulley rest on frictionless planes (Fig. 5.90). a) Which way
will the system move when the blocks are released from rest? b) What
is the acceleration of the blocks? ¢) What is the tension in the cord?

50 kg

30.0°

Figure 3: Figure P5.90 (University Physics)

3 Frictional Forces

Friction is a contact force that we often see in everyday life. There are two kinds
of friction that we will study in this chapter, kinetic friction and static friction. In
both cases, the friction force will depend on n the normal force.

3.1 Kinetic Friction

As the name implies, kinetic friction is the force between two objects slipping or
sliding against each other. The magnitude of the force is written as:

Jx = puen

where iy is the coefficient of kinetic friction, and n is the normal force. Note: The
friction force fir and normal force n are perpendicular to each other.

3.2 Static Friction

Similar to kinetic friction, static friction depends on the normal force and is per-
pendicular to the normal force. Unlike kinetic friction, static friction has a range



of forces extending from 0 to (f5)max-

0 S fs S (fs)max where (fs)max = HUsT

where 4 is the coefficient of static friction. If the external force opposing the
friction exceeds the maximum static-friction force (f;)max, then the object begins
to slide, then the rules of kinetic friction begin to apply.

Ex. 25 A stockroom worker pushes a box with mass 16.8 kg on a horizontal
surface with a constant speed of 3.50 m/s. The coefficient of kinetic
friction between the box and the surface is 0.20. a) What horizontal
force must the worker apply to maintain the motion? b) If the force
calculated in part (a) is removed, how far does the box slide before
coming to rest?

3.3 Terminal Speed

When an object is moving through a fluid it experiences fluid resistance. Using
Newton’s 3' law, we see that the fluid pushes back on the body with an equal
and opposite force. The direction of fluid resistance <ﬁﬂuid resistance) 15 always
opposite to the velocity vector v. The magnitude of fluid resistance will vary for
objects moving at different velocities.

Slow Speeds:  The resisting force at low speeds depends on the size and shape
of the body along with the properties of the fluid.

f=Fkv

where k is a constant of proportionality. One example of this motion is Stoke’s
Law which describes the force applied to a sphere of radius r as it moves through
a fluid having a viscosity 7.

F =6mnrv

Fast Speeds:  The resisting force at high speeds is called “air drag” and can be
written as
F = Dv?

where D is the constant of proportionality that depends on the shape and size of
the body and on the density of the air. Note: the units of D are different from
the units of k.



Example: How do we apply Newton’s 2" law to a rock released at the surface
of a deep pond?

Z F, = mg+ (—kv,) = ma, Note: 4y direction is downward (1)

If the rock reaches terminal speed (i.e., the velocity reaches its maximum, and
no longer changes), then the above equation reduces to:

Z F,=mg+ (—kvy) =0
and the terminal velocity is v; = (mg/k).

However, if you want to know the velocity as a function of time v,(t) as the speed
approaches terminal velocity, then you must solve Eq. 1 with the caveat that the
resisting force, and thus, the acceleration are no longer constant in time. The book
solves Eq. 1 for v, and obtains the following:

vy(t) = v, (1 . e(k/m)t> (2)
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Figure 4: Velocity as a function of time for a dissipative force F,, = —kv, where v; =1 m/s.

Differentiating Eq. 2 with respect to ¢, we find the acceleration a,:
a,(t) = ge~*/mit (notice that a, is not constant)

Integrating Eq. 2 with respect to ¢, we find the equation of motion y(t):

y(t) = v [t — % <1 — e_(k/m)t>]
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Figure 5: Distance as a function of time for a dissipative force F, = —kv,.

Ex. 40 You throw a baseball straight up. The drag force is proportional to v2.
In terms of g, what is the y-component of the ball’s acceleration when

its speed is half its terminal speed and a) it is moving upward? b) it is
moving back down? Note: the terminal speed is vy = y/mg/D.

4 Dynamics of Circular Motion

Previous to this section, we limited the motion of particles along a straight line. We
also assumed that the acceleration was along a straight line. In this section we in-
vestigate a “different” kind of resultant force, one that gives rise to uniform circular
motion. We saw in a previous chapter that circular motion requires acceleration di-
rected toward the center of the circular path, in particular, centripetal acceleration
(araq = v?/R). Thus, Newton’s 224 law takes on the following form:

ZF:m%f

Example: Calculate the tension in a simple pendulum of mass m and length ¢,
and angle §. T = mgcosd + mv?/¢



Ex. 53 Rotating Space Stations. One problem for humans living in outer
space is that they are apparently weightless. One way around this prob-
lem is to design a space station that spins about its center at a constant
rate. This creates “artificial gravity” at the outside rim of the station.

(a) If the diameter of the space station is 800 m, how many revolu-
tions per minute are needed for the “artificial gravity” acceleration to
be 9.80 m/s?? (b) If the space station is a waiting area for travelers
going to Mars, it might be desirable to simulate the acceleration due
to gravity on the Martian surface (3.70 m/s?). How many revolutions
per minute are needed in this case?

Example:

A car is traveling at 20 m /s on level ground and begins to execute a turn
with a radius of curvature of 70 m. What is the minimum coefficient
of static friction ug required to keep it in its circular path?

Prob. 102 A racetrack curve has a radius 120 m and is banked at an angle of 18°.

The coefficient of static friction between the tires and the roadway is
0.300. A race car with mass 900 kg rounds the curve with the minimum
speed needed to not slide down the banking. (a) As the car rounds the
curve, what is the normal force exerted on it by the road? (b) What is
the car’s speed?

5 The Fundamental Forces in Nature

We presently know of four “fundamental” forces in nature. Two of them are long-
range forces (gravity and electromagnetism), the other two are short-range forces
(weak and strong).

Force Range Strength Particle Spin
Strong ~ 1 fm 1 gluon 1h
Weak ~ 1 fm ~107° W=, 79 1h
Electromagnetic 00 ~1072 photon 1h
Gravity 00 ~10~4 graviton 2 h
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Figure 6: The Standard Model showing the force carriers for the 4 fundamental forces.



Feynman Diagrams
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Figure 7: The exchange particles are the force carriers.
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