
Chapter 7

Potential Energy and Energy Conservation

We saw in the previous chapter the relationship between work and kinetic energy.
We also saw that the relationship was the same whether the net external force was
constant or varying as a function of distance F (x).

Wtot = ∆K = Kf −Ki =
1

2
mv2f −

1

2
mv2i

1 Gravitational Potential Energy

Let’s calculate the work done by gravity as it acts on a system moving vertically in
a gravitational field. When calculating the work done by a gravitational field, we
must make sure that the +y direction is pointing upward, away from the center of
the earth.

Wgrav = ~F · ~s = mg y1 −mg y2
where y1 and y2 are the initial and final positions respectively.

Now we define the quantity mgy as the gravitational potential energy Ugrav.

Ugrav = mgy (gravitational potential energy)

Wgrav = −(U2 − U1) = −∆Ugrav

This equation is true in general for all forces where a potential energy function
exists. The minus sign is absolutely essential.

N.B. If a potential energy function exists, we don’t have to calculate the
integral W =

∫
~F · d~s.

N.B. The location of U = 0 is arbitrary. When using W = −∆U in the
work-energy theorem, the important feature is the change in potential
(∆U), not the absolute potential energy (U1 or U2).
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Ex. 1 In one day, a 75-kg mountain climber ascends from the 1500-m level
on a vertical cliff to the top at 2400 m. The next day, she descends
from the top to the base of the cliff, which is at an elevation of 1350 m.
What is her change in gravitational potential energy (a) on the first
day and (b) on the second day.

1.1 Conservation of Mechanical Energy

Let’s assume that the force due to gravity is the “only force” acting on a system
(e.g., projectile motion). What can we learn by applying the work-energy theorem
to such a system?

W = ∆K ⇒ −∆Ugrav = ∆K ⇒ −(U2 − U1) = K2 −K1

Rearranging terms we have:

K1 + U1 = K2 + U2 (conservation of mechanical energy) (1)

or
1

2
mv21 +mgy1 =

1

2
mv22 +mgy2 (if only gravity does the work) (2)

where the subscripts 1 and 2 represent the initial and final positions of the system
respectively. We define the mechanical energy of the system as E = K+U . Again,
if gravity is the only force doing work on the system, then the mechanical
energy of the system is a constant of the motion (i.e., the mechanical energy is
conserved).

E1 = E2 ⇒
1

2
mv21 +mgy1 =

1

2
mv22 +mgy2 (Conservation of Mechanical Energy)

1.2 Effect of Other Forces

What can we say if other forces besides gravity are performing work “on” the
system? The work performed by “other” forces can be calculated using the work-
energy theorem.

Wtotal = ∆K ⇒ Wother +Wgrav = ∆K Wother −∆U = ∆K
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The work done “by” other forces becomes:

Wother = ∆K + ∆U = E2 − E1 6= 0 (3)

Example: Suppose a 2.0-kg projectile is launched over level ground with an
initial velocity of 40 m/s and it returns to the earth with a final
velocity of 30 m/s. What is the work done by air drag?

1.3 Gravitational Potential Energy for Motion Along a Curved Path

Let’s investigate what happens if we no longer restrict our motion to being purely
in the y direction. Let’s imagine an object moves in the x-y plane as shown in Fig 1
below. What is the work done “on” the system by gravity (i.e., Wgrav = ?) ?
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B
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ds
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Figure 1: The vertical bars (red and blue) show the incremental length of cosα ds for each step
between point A and point B. The sum of the negative (red) bars and the positive (blue) bars
results in a net length of red bars whose total length is the difference in height between points A
and B.

In short, the total work done by gravity is still

Wgrav = −∆U = −(mgyB −mgyA) = −mg(yB − yA) = −mg (change in height)
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N.B. The work done by gravity, even when an object has a complicated
trajectory, only depends on the “change in height.”

Ex. 11 You are testing a new amusement park roller coaster with an empty car
with mass 120 kg. One part of the track is a vertical loop with radius
12.0 m. At the bottom of the loop (point A) the car has speed 25.0 m/s
and at the top of the loop (point B) has speed 8.0 m/s. As the car rolls
from point A to point B, how much work is done by friction?

2 Elastic Potential Energy

Obviously, there are other forces besides gravity that can perform work “on” a
system. Let’s turn our attention to a force we saw in the previous chapter, namely
the elastic force due to a spring. We saw that the work done ”by” a spring is:

Wel =
1

2
kx21 −

1

2
kx22 (work done “by” a spring)

where 1 and 2 are the initial and final positions respectively. Notice the similarity
between this equation to Wgrav = mgy1 − mgy2. Again, the work done is the
difference between two quantities (i.e., the potential energies). If we define

Uelastic =
1

2
kx2

then we can write the work done “by” an elastic force as:

Wel = −∆U elastic = −(U el
2 − U el

1 ) (4)

Writing out each of the terms explicitly, we have:

Wel =
1

2
kx21 −

1

2
kx22 (work done “by” a spring)

Using the work-energy theorem, we have

W = ∆K ⇒ Wel = K2 −K1 ⇒ −∆Uel = K2 −K1 ⇒

−(
1

2
kx22 −

1

2
kx21) =

1

2
mv22 −

1

2
mv21 ⇒ 1

2
mv21 +

1

2
kx21 =

1

2
mv22 +

1

2
kx22

Again, we see that we have conservation of mechanical energy, E1 = E2, where
E = K + U , and the elastic force is the only external force doing work.
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2.1 Situations with Both Gravitational and Elastic Potential Energy

Using the work-energy theorem, along with the potential energy functions we’ve
defined thus far, make it trivial to combine the work done by multiple forces.
Starting with the work-energy theorem, we have:

W = ∆K ⇒ Wgrav +Wel = ∆K (5)

−∆Ugrav −∆Uel = ∆K

Writing out each of the ∆’s and combining terms, we have:

K1 + U grav
1 + U el

1 = K2 + U grav
2 + U el

2

which becomes

1

2
mv21 +mgy1 +

1

2
kx21 =

1

2
mv22 +mgy2 +

1

2
kx22 (6)

N.B. We still have conservation of mechanical energy after combining the
elastic force with the gravitational force, E1 = E2. The mechanical
energy is again a “constant of the motion” (i.e., E = 1

2mv
2 + mgy +

1
2kx

2 is the same throughout the motion).

Ex. 21 A spring of negligible mass has force constant k = 1600 N/m. a) How
far must the spring be compressed for 3.20 J of potential energy to be
stored in it? b) You place the spring vertically with one end on the
floor. You then drop a 1.20-kg book onto it from a height of 0.80 m
above the top of the spring. Find the maximum distance the spring
will be compressed.

3 Conservative and Nonconservative Forces

In this section we’re going to look at the left-hand side of the work-energy theorem
and separate the forces doing the work into two different classes, conservative and
non-conservative. First of all, how do we know if a force is a conservative force?
The work done by a conservative force always has the following properties:

1. It can always be expressed as the difference between the initial and final values
of a potential energy function.
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2. It is reversible (i.e., mechanical energy related to that force is conserved).

3. It is independent of the path of the body and depends only on the starting
and ending points.

4. When the starting and ending points are the same, the total work is zero.

What about non-conservative forces? The only way to calculate the work done
“by” non-conservative forces is to return to our original definition of work, namely
Wnc =

∫
~F · d~s.

If all the forces are conservative, then:

E = K + U and E1 = E2

If one or more of the forces are non-conservative, then:

E = K + U and Wnc = E2 − E1

Example: A 1.00-kg box is released from rest on a frictionless inclined plane
2.00 meters above the ground. Once released, it slides down the
incline and encounters a horizontal surface where the coefficient of
kinetic friction is µk for a distance of two meters. After passing
over the “friction pad,” it proceeds up a frictionless incline until it
reaches a maximum height of 1.50 meters. Find the coefficient of
kinetic friction.

Example: A 1.00-kg box is released from rest on a frictionless inclined plane
2.00 meters above the ground. Once released, it slides down the
incline and encounters a horizontal surface where the coefficient
of kinetic friction is µk = 0.25 for a distance of two meters. After
passing over the “friction pad,” it encounters a spring with a spring
constant of 1600 N/m and compresses it. What is the maximum
compression of the spring?
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Ex. 28 In an experiment, one of the forces exerted on a proton is ~F = −αx2ı̂,
where α = 12 N/m2. a) How much work does ~F do when the proton
moves along the straight-line path from the point (0.10 m, 0) to the
point (0.10 m, 0.40 m)? b) Along the straight-line path from the point
(0.10 m, 0) to the point (0.30 m, 0)? c) Along the straight-line path
from the point (0.30 m, 0), to the point (0.10 m, 0)? d) Is the force
~F conservative? Explain. If ~F is conservative, what is the potential
energy function for it? Let U = 0 when x = 0.

3.1 The Law of Conservation of Energy

The law of conservation of energy even encompasses the work done by non-conservative
forces. For example, if we have non-conservative forces contributing the total work,
we can write:

W = ∆K ⇒ Wcons +Wnc = ∆K ⇒ −∆U +Wnc = ∆K

and from this, determine the total work done by non-conservative forces:

Wnc = ∆K + ∆U ⇒ Wnc = (K2 + U2)− (K1 + U1) = E2 − E1

In thermodynamics, it’s possible to relate the Wnc to the change in internal energy
of the working gas (−∆Uint). Thus

Wnc = −∆Uint = E2 − E1

or
∆Uint + ∆K + ∆Ucons = 0 (law of conservation of energy)

4 Force and Potential Energy

In physics, you will encounter situations where the potential energy as a function
of position is known and you will want to find the corresponding force. We know
from our definition of work that:

∆W = Fx ∆x = −∆U ⇒ F = −∆U

∆x
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As we take the limit ∆x→ 0, we obtain the following equation:

Fx(x) = − dU
dx

(force from potential energy, one dimension) (7)

Ex. 32 The potential energy of a pair of hydrogen atoms separated by a large
distance x is given by U(x) = −C6/x

6, where C6 is a positive constant.
What is the force that one atom exerts on the other? Is this force
attractive or repulsive?

Example Gravity in One Dimension. Two point masses, m1 and m2 lie on
the x-axis with m1 held in place at the origin and m2 at position x

and free to move. The gravitational potential energy of these masses
is found to be U(x) = −Gm1m2/x, where G is a constant (called
the gravitational constant). You’ll learn more about gravitation
in Chapter 12. Find the x-component of the force acting on m2 due
to m1. Is this force attractive or repulsive? How do you know?

4.1 Force and Potential Energy in Three Dimensions

We can continue this definition of force into 2 and 3 dimensions if we know the
potential energy function U(x, y, z). The x, y, and z components of force are:

Fx = −∂U
∂x

Fy = −∂U
∂y

Fz = −∂U
∂z

The force vector can be written as:

~F = Fx ı̂+Fy ̂+Fz k̂ = −
(
ı̂
∂U

∂x
+ ̂

∂U

∂y
+ k̂

∂U

∂z

)
(force from the potential energy)

In short-hand notation, this equation can be written as:

~F = −~∇U where ~∇ = ı̂
∂

∂x
+ ̂

∂

∂y
+ k̂

∂

∂z

where ~∇ is called the del operator, and ~∇U is the gradient of U .
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Example: Suppose we have a three-dimensional harmonic oscillator whose po-
tential energy function is U(x, y, z) = 1

2k(x2+y2+z2). Find the force
vector corresponding to this potential energy function.

5 Energy Diagrams

You can also plot the potential energy function U(x) and locate stable and unstable
equilibrium. These figures are called energy diagrams.

Figure 2: Potential energy function for a simple harmonic oscillator.
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Figure 3: The relationship between the potential-energy function and the force for a hypothetical
potential-energy function U(x).
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Figure 4: This is the figure for problem 57 from chapter 7 of University Physics 14th edition.

Prob. 57 In a truck-loading station at a post office, a small 0.200-kg package
is released from rest at point A on a track that is one-quarter of a
circle with radius 1.60 m (Fig. P7.57). The size of the package is
much less than 1.60 m, so the package can be treated as a particle. It
slides down the track and reaches point B with a speed of 4.80 m/s.
From point B, it slides on a level surface a distance of 3.00 m to
point C, where it comes to rest. (a) What is the coefficient of kinetic
friction on the horizontal surface? (b) How much work is done on
the package by friction as it slides down the circular arc from A to
B.

Prob. 70 A small block with mass 0.0400 kg slides in a vertical circle of radius
R = 0.500 m on the inside of a circular track. During one of the
revolutions of the block, when the block is at the bottom of its path,
point A, the magnitude of the normal force exerted on the block
by the track has magnitude 3.95 N. In this same revolution, when
the block reaches the top of its path, point B, the magnitude of the
normal force exerted on the block has magnitude 0.680 N. How much
work was done by friction during the motion of the block from point
A to point B?
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